Deep Learning in Ultrasound Localization Microscopy: Applications and Perspectives

显微镜 声学显微镜 超声波 材料科学 超声成像 光学 声学 物理
作者
Brice Rauby,Paul Xing,Maxime Gasse,Jean Provost
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tuffc.2024.3462299
摘要

Ultrasound Localization Microscopy (ULM) is a novel super-resolution imaging technique that can image the vasculature in vivo at depth with resolution far beyond the conventional limit of diffraction. By relying on the localization and tracking of clinically approved microbubbles injected in the blood stream, ULM can provide not only anatomical visualization but also hemodynamic quantification of the microvasculature of different tissues. Various deep-learning approaches have been proposed to address challenges in ULM including denoising, improving microbubble localization, estimating blood flow velocity or performing aberration correction. Proposed deep learning methods often outperform their conventional counterparts by improving image quality and reducing processing time. In addition, their robustness to high concentrations of microbubbles can lead to reduced acquisition times in ULM, addressing a major hindrance to ULM clinical application. Herein, we propose a comprehensive review of the diversity of deep learning applications in ULM focusing on approaches assuming a sparse microbubbles distribution. We first provide an overview of how existing studies vary in the constitution of their datasets or in the tasks targeted by deep learning model. We also take a deeper look into the numerous approaches that have been proposed to improve the localization of microbubbles since they differ highly in their formulation of the optimization problem, their evaluation, or their network architectures. We finally discuss the current limitations and challenges of these methods, as well as the promises and potential of deep learning for ULM in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
义气小白菜完成签到 ,获得积分10
1秒前
杜faifai发布了新的文献求助10
2秒前
白子双完成签到,获得积分10
3秒前
3秒前
舒适的梦玉完成签到,获得积分10
3秒前
笑林完成签到 ,获得积分10
4秒前
朕爱圣女果完成签到,获得积分10
4秒前
桃子发布了新的文献求助10
5秒前
Leo完成签到,获得积分10
5秒前
阿千发布了新的文献求助10
5秒前
chenzao完成签到 ,获得积分10
6秒前
Arthur完成签到 ,获得积分10
7秒前
marco完成签到 ,获得积分10
8秒前
西西完成签到 ,获得积分10
9秒前
shineshine完成签到 ,获得积分10
10秒前
研友_Z60ObL完成签到,获得积分10
10秒前
lululululululu完成签到,获得积分10
10秒前
哟哟哟完成签到,获得积分10
11秒前
萤火完成签到,获得积分10
11秒前
桃子完成签到,获得积分10
15秒前
月亮很亮完成签到,获得积分10
19秒前
大模型应助呆萌的曼雁采纳,获得10
19秒前
王金娥完成签到,获得积分10
19秒前
xdf完成签到,获得积分10
20秒前
Jameson完成签到,获得积分10
21秒前
阿千完成签到,获得积分10
21秒前
刘一三完成签到 ,获得积分10
23秒前
一木完成签到,获得积分10
24秒前
六步郎完成签到,获得积分10
27秒前
chenjun7080完成签到,获得积分10
28秒前
研友_Z7XgR8发布了新的文献求助10
28秒前
时尚雨兰完成签到,获得积分10
28秒前
30秒前
单薄的英姑完成签到 ,获得积分10
30秒前
PengHu完成签到,获得积分10
30秒前
31秒前
31秒前
宇宙的中心完成签到,获得积分10
33秒前
Clarissa完成签到,获得积分10
33秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3261743
求助须知:如何正确求助?哪些是违规求助? 2902575
关于积分的说明 8320003
捐赠科研通 2572346
什么是DOI,文献DOI怎么找? 1397564
科研通“疑难数据库(出版商)”最低求助积分说明 653851
邀请新用户注册赠送积分活动 632308