亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning in Ultrasound Localization Microscopy: Applications and Perspectives

深度学习 微气泡 人工智能 计算机科学 稳健性(进化) 超声波 可视化 超分辨率 模式识别(心理学) 图像(数学) 医学 放射科 生物 生物化学 基因
作者
Brice Rauby,Paul Xing,Maxime Gasse,Jean Provost
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers]
卷期号:71 (12: Breaking the Resolution): 1765-1784 被引量:8
标识
DOI:10.1109/tuffc.2024.3462299
摘要

Ultrasound localization microscopy (ULM) is a novel super-resolution imaging technique that can image the vasculature in vivo at depth with resolution far beyond the conventional limit of diffraction. By relying on the localization and tracking of clinically approved microbubbles injected in the blood stream, ULM can provide not only anatomical visualization but also hemodynamic quantification of the microvasculature. Several deep learning approaches have been proposed to address challenges in ULM including denoising, improving microbubble localization, estimating blood flow velocity, or performing aberration correction. Proposed deep learning methods often outperform their conventional counterparts by improving image quality and reducing processing time. In addition, their robustness to high concentrations of microbubbles can lead to reduced acquisition times in ULM, addressing a major hindrance to ULM clinical application. Herein, we propose a comprehensive review of the diversity of deep learning applications in ULM focusing on approaches assuming a sparse microbubble distribution. We first provide an overview of how existing studies vary in the constitution of their datasets or in the tasks targeted by the deep learning model. We also take a deeper look into the numerous approaches that have been proposed to improve the localization of microbubbles since they differ highly in their formulation of the optimization problem, their evaluation, or their network architectures. We finally discuss the current limitations and challenges of these methods, as well as the promises and potential of deep learning for ULM in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
科研通AI2S应助科研通管家采纳,获得30
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
chunyan_sysu完成签到,获得积分10
2分钟前
2分钟前
坐井观天的蛙完成签到 ,获得积分10
2分钟前
wangermazi完成签到,获得积分0
3分钟前
3分钟前
咯咯咯完成签到 ,获得积分10
3分钟前
完美世界应助ljj001ljj采纳,获得10
3分钟前
文明8完成签到 ,获得积分10
4分钟前
xuan完成签到,获得积分10
4分钟前
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
6分钟前
gexzygg发布了新的文献求助10
6分钟前
gszy1975完成签到,获得积分10
6分钟前
7分钟前
FashionBoy应助liwen采纳,获得10
7分钟前
Cx完成签到,获得积分10
7分钟前
7分钟前
7分钟前
liwen发布了新的文献求助10
7分钟前
George发布了新的文献求助10
7分钟前
7分钟前
7分钟前
George完成签到,获得积分10
8分钟前
吴端完成签到,获得积分10
8分钟前
8分钟前
8分钟前
9分钟前
情怀应助玛卡巴卡采纳,获得10
9分钟前
喻初原完成签到 ,获得积分10
9分钟前
阳光的丹雪完成签到,获得积分10
9分钟前
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554946
求助须知:如何正确求助?哪些是违规求助? 4639538
关于积分的说明 14656291
捐赠科研通 4581453
什么是DOI,文献DOI怎么找? 2512813
邀请新用户注册赠送积分活动 1487527
关于科研通互助平台的介绍 1458503