Deep Learning in Ultrasound Localization Microscopy: Applications and Perspectives

显微镜 声学显微镜 超声波 材料科学 超声成像 光学 声学 物理
作者
Brice Rauby,Paul Xing,Maxime Gasse,Jean Provost
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tuffc.2024.3462299
摘要

Ultrasound Localization Microscopy (ULM) is a novel super-resolution imaging technique that can image the vasculature in vivo at depth with resolution far beyond the conventional limit of diffraction. By relying on the localization and tracking of clinically approved microbubbles injected in the blood stream, ULM can provide not only anatomical visualization but also hemodynamic quantification of the microvasculature of different tissues. Various deep-learning approaches have been proposed to address challenges in ULM including denoising, improving microbubble localization, estimating blood flow velocity or performing aberration correction. Proposed deep learning methods often outperform their conventional counterparts by improving image quality and reducing processing time. In addition, their robustness to high concentrations of microbubbles can lead to reduced acquisition times in ULM, addressing a major hindrance to ULM clinical application. Herein, we propose a comprehensive review of the diversity of deep learning applications in ULM focusing on approaches assuming a sparse microbubbles distribution. We first provide an overview of how existing studies vary in the constitution of their datasets or in the tasks targeted by deep learning model. We also take a deeper look into the numerous approaches that have been proposed to improve the localization of microbubbles since they differ highly in their formulation of the optimization problem, their evaluation, or their network architectures. We finally discuss the current limitations and challenges of these methods, as well as the promises and potential of deep learning for ULM in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
故意的傲玉应助小月采纳,获得10
1秒前
nicemice发布了新的文献求助10
1秒前
xtlx完成签到,获得积分10
1秒前
蓝桉完成签到,获得积分10
2秒前
执着的怜寒应助aaaabc采纳,获得20
2秒前
2秒前
花花发布了新的文献求助10
2秒前
万能图书馆应助白华苍松采纳,获得10
3秒前
孔大漂亮完成签到,获得积分10
4秒前
5秒前
打打应助HopeStar采纳,获得10
5秒前
5秒前
科研通AI5应助标致小伙采纳,获得30
5秒前
有风发布了新的文献求助10
5秒前
5秒前
路在脚下完成签到 ,获得积分10
5秒前
bkagyin应助GOODYUE采纳,获得10
6秒前
Jasper应助彩色的蓝天采纳,获得10
6秒前
詹严青发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
郭翔完成签到,获得积分10
7秒前
Yeong发布了新的文献求助10
8秒前
jh完成签到 ,获得积分10
8秒前
syq完成签到,获得积分10
9秒前
sfw完成签到,获得积分10
9秒前
10秒前
光亮面包完成签到 ,获得积分10
10秒前
小猪啵比完成签到 ,获得积分10
10秒前
小智发布了新的文献求助10
10秒前
毛慢慢发布了新的文献求助10
10秒前
lilac应助1234567890采纳,获得10
11秒前
OYE发布了新的文献求助10
11秒前
木木发布了新的文献求助10
12秒前
zhy完成签到,获得积分10
13秒前
13秒前
自由的刺猬完成签到,获得积分20
13秒前
潇洒甜瓜发布了新的文献求助10
14秒前
jessie完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759