Deep Learning in Ultrasound Localization Microscopy: Applications and Perspectives

显微镜 声学显微镜 超声波 材料科学 超声成像 光学 声学 物理
作者
Brice Rauby,Paul Xing,Maxime Gasse,Jean Provost
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tuffc.2024.3462299
摘要

Ultrasound Localization Microscopy (ULM) is a novel super-resolution imaging technique that can image the vasculature in vivo at depth with resolution far beyond the conventional limit of diffraction. By relying on the localization and tracking of clinically approved microbubbles injected in the blood stream, ULM can provide not only anatomical visualization but also hemodynamic quantification of the microvasculature of different tissues. Various deep-learning approaches have been proposed to address challenges in ULM including denoising, improving microbubble localization, estimating blood flow velocity or performing aberration correction. Proposed deep learning methods often outperform their conventional counterparts by improving image quality and reducing processing time. In addition, their robustness to high concentrations of microbubbles can lead to reduced acquisition times in ULM, addressing a major hindrance to ULM clinical application. Herein, we propose a comprehensive review of the diversity of deep learning applications in ULM focusing on approaches assuming a sparse microbubbles distribution. We first provide an overview of how existing studies vary in the constitution of their datasets or in the tasks targeted by deep learning model. We also take a deeper look into the numerous approaches that have been proposed to improve the localization of microbubbles since they differ highly in their formulation of the optimization problem, their evaluation, or their network architectures. We finally discuss the current limitations and challenges of these methods, as well as the promises and potential of deep learning for ULM in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助一条咸鱼采纳,获得10
1秒前
2秒前
2秒前
谢兰完成签到,获得积分10
3秒前
3秒前
5秒前
djbj2022发布了新的文献求助10
6秒前
6秒前
俗人完成签到,获得积分10
8秒前
9秒前
9秒前
wen发布了新的文献求助10
9秒前
10秒前
浅夏发布了新的文献求助10
10秒前
11秒前
田様应助AuH采纳,获得10
12秒前
13秒前
smin发布了新的文献求助10
13秒前
小二郎应助寂寞的小乌龟采纳,获得10
14秒前
小呆子发布了新的文献求助10
14秒前
FashionBoy应助zhangqi采纳,获得10
15秒前
15秒前
乐观小之应助jackten采纳,获得10
17秒前
机智的紫青完成签到 ,获得积分20
17秒前
17秒前
李爱国应助如风随水采纳,获得10
20秒前
21秒前
嬉笑完成签到,获得积分10
21秒前
菠萝派发布了新的文献求助10
21秒前
DDL消失发布了新的文献求助10
24秒前
情怀应助半截神经病采纳,获得10
25秒前
量子星尘发布了新的文献求助10
26秒前
26秒前
27秒前
27秒前
啦啦啦完成签到 ,获得积分10
28秒前
研友_LNBW5L完成签到,获得积分10
28秒前
28秒前
29秒前
Ppp发布了新的文献求助10
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952648
求助须知:如何正确求助?哪些是违规求助? 3498110
关于积分的说明 11090445
捐赠科研通 3228721
什么是DOI,文献DOI怎么找? 1785066
邀请新用户注册赠送积分活动 869081
科研通“疑难数据库(出版商)”最低求助积分说明 801349