A Fault Diagnosis Method for Bearings and Gears in Rotating Machinery Based on Data Fusion and Transfer Learning

融合 断层(地质) 计算机科学 方位(导航) 学习迁移 传输(计算) 人工智能 控制理论(社会学) 机械工程 工程类 地质学 地震学 哲学 语言学 控制(管理) 并行计算
作者
Yi Zhang,Xiaoxiang Yan,Ping Xiao,Jialing Zou,Ling Hu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 016104-016104
标识
DOI:10.1088/1361-6501/ad7f74
摘要

Abstract Rotating machinery is a crucial component of industrial equipment, and the fault diagnosis of bearings and gears, as vital elements of rotating machinery, is essential since they often fail under harsh working conditions, leading to significant property losses and serious personal safety problems. However, fault data for gears and bearings are often sparse in actual condition, and it is a challenge to ensure the reliability and stability of fault diagnosis results by extracting the features of a single data. To solve the above problems, this paper proposes a fault diagnosis method that combines Transfer Learning and data fusion techniques. Firstly, in this method, two kinds of fault signals are transformed into Gramian Angular Difference Fields and Recurrence Plot. Next, a U-shaped feature fusion dual discriminator generative adversarial network is used to fuse two-dimensional images from multiple sensor data. Its feature fusion module deeply integrates the features of the two images, thereby solving the impact of single data on the reliability and stability of fault diagnosis. Moreover, open-source datasets are used for Transfer Learning training to tackle the small sample problem. Finally, a decision-level information fusion classifier, the Dual-Branch Dempster-Shafer Classifier (DB-DSC), classifies the fused images. This classifier incorporates an improved soft threshold function and D-S evidence theory to achieve adaptive gradient changes and improve the robustness and accuracy of classification results. The experimental results show the effectiveness and stability of the proposed method, and the generated images get high score in several metrics. The average classification accuracy of the classification network reaches 93% and 92.5% on the two datasets, Therefore, the proposed method exhibits strong fault diagnosis capabilities under the small sample conditions of bearings and gears.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gg完成签到,获得积分10
3秒前
3秒前
蒋念寒发布了新的文献求助10
3秒前
SciGPT应助墨酒采纳,获得10
3秒前
Hcc发布了新的文献求助10
4秒前
123发布了新的文献求助10
5秒前
pharm发布了新的文献求助10
7秒前
万能图书馆应助盛盛采纳,获得10
8秒前
小确幸完成签到,获得积分10
9秒前
13秒前
LIZHI完成签到 ,获得积分10
13秒前
13秒前
14秒前
KCMd完成签到,获得积分10
15秒前
15秒前
16秒前
memory完成签到,获得积分10
16秒前
小蘑菇应助忧伤的白猫采纳,获得30
16秒前
16秒前
17秒前
古炮完成签到,获得积分10
17秒前
华仔应助Ruyii采纳,获得10
17秒前
17秒前
Crazy111完成签到,获得积分10
17秒前
苹果骑士完成签到,获得积分10
18秒前
木又权发布了新的文献求助20
18秒前
Tree完成签到 ,获得积分10
18秒前
18秒前
鱼儿乐园完成签到 ,获得积分10
19秒前
19秒前
viola发布了新的文献求助20
19秒前
峥2发布了新的文献求助10
19秒前
hhhi应助张超超采纳,获得10
19秒前
香蕉秋寒发布了新的文献求助10
19秒前
TOP发布了新的文献求助10
20秒前
古月发布了新的文献求助10
22秒前
科研通AI5应助CXSCXD采纳,获得10
22秒前
23秒前
MOJIN关注了科研通微信公众号
23秒前
研友_ZbKVX8发布了新的文献求助10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992229
求助须知:如何正确求助?哪些是违规求助? 3533231
关于积分的说明 11261619
捐赠科研通 3272656
什么是DOI,文献DOI怎么找? 1805867
邀请新用户注册赠送积分活动 882720
科研通“疑难数据库(出版商)”最低求助积分说明 809452