A Fault Diagnosis Method for Bearings and Gears in Rotating Machinery Based on Data Fusion and Transfer Learning

融合 断层(地质) 计算机科学 方位(导航) 学习迁移 传输(计算) 人工智能 控制理论(社会学) 机械工程 工程类 地质学 地震学 哲学 语言学 控制(管理) 并行计算
作者
Yi Zhang,Xiaoxiang Yan,Ping Xiao,Jialing Zou,Ling Hu
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad7f74
摘要

Abstract Rotating machinery is a crucial component of industrial equipment, and the fault diagnosis of bearings and gears, as vital elements of rotating machinery, is essential since they often fail under harsh working conditions, leading to significant property losses and serious personal safety problems. However, fault data for gears and bearings are often sparse in actual condition, and It is a challenge to ensure the reliability and stability of fault diagnosis results by extracting the features of a single data. To solve the above problems, this paper proposes a fault diagnosis method that combines Transfer Learning and data fusion techniques.Firstly, in this method, two kinds of fault signals are transformed into GramianAngular Difference Fields (GADF) and Recurrence Plot (RP). Next, a U-shaped feature fusion dual discriminator generative adversarial network (U-DDCGAN) is used to fuse two-dimensional images from multiple sensor data. Its feature fusion module deeply integrates the features of the two images, thereby solving the impact of single data on the reliability and stability of fault diagnosis. Moreover, open-source datasets are used for Transfer Learning training to tackle the small sample problem. Finally, a decision-level information fusion classifier, the Dual-Branch Dempster-Shafer Classifier (DB-DSC), classifies the fused images. This classifier incorporates an improved soft threshold function and D-S evidence theory to achieve adaptive gradient changes and improve the robustness and accuracy of classification results.The experimental results show the effectiveness and stability of the proposed method, and the generated images get high score in several metrics. The average classification accuracy of the classification network reaches 93% and 92.5% on the two datasets,Therefore, the proposed method exhibits strong fault diagnosis capabilities under the small sample conditions of bearings and gears. Keywords: Data fusion ,Transfer learning ,Fault diagnosis, small sample ,Soft thresholding
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奥特曼发布了新的文献求助10
1秒前
LFJ完成签到,获得积分10
1秒前
曾经的听云完成签到 ,获得积分10
1秒前
hhhhhh发布了新的文献求助10
1秒前
仁爱宛筠发布了新的文献求助10
1秒前
Heyu完成签到,获得积分10
1秒前
Akim应助优秀不愁采纳,获得10
2秒前
3秒前
3秒前
实验每天都成功完成签到,获得积分10
3秒前
文静的凡儿完成签到,获得积分10
4秒前
熊熊熊完成签到,获得积分10
4秒前
Jeffery426完成签到,获得积分10
4秒前
dreamon发布了新的文献求助10
6秒前
foreve1完成签到,获得积分10
6秒前
韩soso完成签到,获得积分10
7秒前
郗妫完成签到,获得积分10
10秒前
rosalieshi应助max采纳,获得30
10秒前
二二应助奥特曼采纳,获得10
12秒前
13秒前
15秒前
彭于彦祖应助科研通管家采纳,获得30
18秒前
脑洞疼应助科研通管家采纳,获得10
18秒前
英俊的铭应助科研通管家采纳,获得10
18秒前
CodeCraft应助科研通管家采纳,获得10
18秒前
852应助科研通管家采纳,获得10
18秒前
NexusExplorer应助科研通管家采纳,获得10
18秒前
彭于晏应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
322628完成签到,获得积分10
21秒前
kiko完成签到 ,获得积分10
23秒前
jimmy完成签到,获得积分10
23秒前
Ava应助聪慧百合采纳,获得10
25秒前
希望天下0贩的0应助vino采纳,获得10
25秒前
脑洞疼应助Glufo采纳,获得30
26秒前
28秒前
佳佳欧巴完成签到 ,获得积分10
28秒前
29秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152012
求助须知:如何正确求助?哪些是违规求助? 2803289
关于积分的说明 7853106
捐赠科研通 2460769
什么是DOI,文献DOI怎么找? 1310001
科研通“疑难数据库(出版商)”最低求助积分说明 629087
版权声明 601760