A Fault Diagnosis Method for Bearings and Gears in Rotating Machinery Based on Data Fusion and Transfer Learning

融合 断层(地质) 计算机科学 方位(导航) 学习迁移 传输(计算) 人工智能 控制理论(社会学) 机械工程 工程类 地质学 地震学 哲学 语言学 控制(管理) 并行计算
作者
Yi Zhang,Xiaoxiang Yan,Ping Xiao,Jialing Zou,Ling Hu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 016104-016104
标识
DOI:10.1088/1361-6501/ad7f74
摘要

Abstract Rotating machinery is a crucial component of industrial equipment, and the fault diagnosis of bearings and gears, as vital elements of rotating machinery, is essential since they often fail under harsh working conditions, leading to significant property losses and serious personal safety problems. However, fault data for gears and bearings are often sparse in actual condition, and it is a challenge to ensure the reliability and stability of fault diagnosis results by extracting the features of a single data. To solve the above problems, this paper proposes a fault diagnosis method that combines Transfer Learning and data fusion techniques. Firstly, in this method, two kinds of fault signals are transformed into Gramian Angular Difference Fields and Recurrence Plot. Next, a U-shaped feature fusion dual discriminator generative adversarial network is used to fuse two-dimensional images from multiple sensor data. Its feature fusion module deeply integrates the features of the two images, thereby solving the impact of single data on the reliability and stability of fault diagnosis. Moreover, open-source datasets are used for Transfer Learning training to tackle the small sample problem. Finally, a decision-level information fusion classifier, the Dual-Branch Dempster-Shafer Classifier (DB-DSC), classifies the fused images. This classifier incorporates an improved soft threshold function and D-S evidence theory to achieve adaptive gradient changes and improve the robustness and accuracy of classification results. The experimental results show the effectiveness and stability of the proposed method, and the generated images get high score in several metrics. The average classification accuracy of the classification network reaches 93% and 92.5% on the two datasets, Therefore, the proposed method exhibits strong fault diagnosis capabilities under the small sample conditions of bearings and gears.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
floly发布了新的文献求助20
刚刚
qin202569完成签到,获得积分10
2秒前
轨迹应助curlycai采纳,获得40
2秒前
无花果应助丰富芹菜采纳,获得10
4秒前
Deq完成签到,获得积分10
4秒前
4秒前
科研通AI6.2应助学习采纳,获得10
4秒前
积极香菇完成签到,获得积分10
5秒前
sxb10101应助wan采纳,获得10
6秒前
枯草发布了新的文献求助10
7秒前
9秒前
9秒前
烟花应助害羞大白菜采纳,获得10
10秒前
FYm完成签到,获得积分10
11秒前
危机的碧菡完成签到,获得积分10
11秒前
12秒前
12秒前
芥末发布了新的文献求助10
12秒前
科研通AI6.1应助April采纳,获得10
13秒前
14秒前
轨迹应助curlycai采纳,获得40
14秒前
15秒前
wan完成签到,获得积分10
17秒前
尾状叶完成签到 ,获得积分10
17秒前
ybheart完成签到,获得积分0
18秒前
刘雪晴完成签到 ,获得积分10
19秒前
20秒前
20秒前
共享精神应助haoliangshi采纳,获得10
21秒前
上官若男应助轻松的悟空采纳,获得10
23秒前
然然完成签到 ,获得积分10
24秒前
枯草完成签到,获得积分10
24秒前
洋了个洋发布了新的文献求助10
25秒前
忧心的寄松完成签到,获得积分10
27秒前
干净博涛完成签到 ,获得积分10
29秒前
30秒前
Akim应助小桔青山采纳,获得10
31秒前
李悟尔发布了新的文献求助10
32秒前
Fxy完成签到 ,获得积分10
35秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
生活在欺瞒的年代:傅树介政治斗争回忆录 260
A History of Rice in China 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5874805
求助须知:如何正确求助?哪些是违规求助? 6510728
关于积分的说明 15675172
捐赠科研通 4992381
什么是DOI,文献DOI怎么找? 2691139
邀请新用户注册赠送积分活动 1633514
关于科研通互助平台的介绍 1591186