A Fault Diagnosis Method for Bearings and Gears in Rotating Machinery Based on Data Fusion and Transfer Learning

融合 断层(地质) 计算机科学 方位(导航) 学习迁移 传输(计算) 人工智能 控制理论(社会学) 机械工程 工程类 地质学 地震学 哲学 语言学 控制(管理) 并行计算
作者
Yi Zhang,Xiaoxiang Yan,Ping Xiao,Jialing Zou,Ling Hu
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad7f74
摘要

Abstract Rotating machinery is a crucial component of industrial equipment, and the fault diagnosis of bearings and gears, as vital elements of rotating machinery, is essential since they often fail under harsh working conditions, leading to significant property losses and serious personal safety problems. However, fault data for gears and bearings are often sparse in actual condition, and It is a challenge to ensure the reliability and stability of fault diagnosis results by extracting the features of a single data. To solve the above problems, this paper proposes a fault diagnosis method that combines Transfer Learning and data fusion techniques.Firstly, in this method, two kinds of fault signals are transformed into GramianAngular Difference Fields (GADF) and Recurrence Plot (RP). Next, a U-shaped feature fusion dual discriminator generative adversarial network (U-DDCGAN) is used to fuse two-dimensional images from multiple sensor data. Its feature fusion module deeply integrates the features of the two images, thereby solving the impact of single data on the reliability and stability of fault diagnosis. Moreover, open-source datasets are used for Transfer Learning training to tackle the small sample problem. Finally, a decision-level information fusion classifier, the Dual-Branch Dempster-Shafer Classifier (DB-DSC), classifies the fused images. This classifier incorporates an improved soft threshold function and D-S evidence theory to achieve adaptive gradient changes and improve the robustness and accuracy of classification results.The experimental results show the effectiveness and stability of the proposed method, and the generated images get high score in several metrics. The average classification accuracy of the classification network reaches 93% and 92.5% on the two datasets,Therefore, the proposed method exhibits strong fault diagnosis capabilities under the small sample conditions of bearings and gears. Keywords: Data fusion ,Transfer learning ,Fault diagnosis, small sample ,Soft thresholding
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
习习发布了新的文献求助10
刚刚
刚刚
往事无痕完成签到 ,获得积分10
1秒前
1秒前
1秒前
逸龙完成签到,获得积分10
1秒前
buno应助单纯的雅香采纳,获得10
2秒前
xinchengzhu发布了新的文献求助10
3秒前
派大星发布了新的文献求助10
3秒前
科研通AI5应助黄紫红蓝采纳,获得10
4秒前
4秒前
4秒前
fff发布了新的文献求助10
4秒前
4秒前
5秒前
科研人发布了新的文献求助10
5秒前
5秒前
徐慕源发布了新的文献求助10
5秒前
wenwen完成签到,获得积分10
5秒前
XZZH完成签到,获得积分10
6秒前
清浅发布了新的文献求助10
6秒前
车到山前必有路女士完成签到,获得积分10
6秒前
JamesPei应助Ripples采纳,获得10
6秒前
6秒前
我是老大应助乐园采纳,获得10
7秒前
8秒前
个木发布了新的文献求助10
8秒前
谨慎不二发布了新的文献求助10
8秒前
CodeCraft应助lishunzcqty采纳,获得10
9秒前
青丝落花完成签到,获得积分10
9秒前
化学小学生完成签到,获得积分10
9秒前
10秒前
完美世界应助高高迎蓉采纳,获得10
10秒前
已拿捏催化剂完成签到 ,获得积分10
10秒前
WJM发布了新的文献求助10
10秒前
左丘忻完成签到,获得积分10
10秒前
11秒前
端庄的萝发布了新的文献求助20
11秒前
孟严青完成签到,获得积分10
11秒前
livra1058完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678