A Fault Diagnosis Method for Bearings and Gears in Rotating Machinery Based on Data Fusion and Transfer Learning

融合 断层(地质) 计算机科学 方位(导航) 学习迁移 传输(计算) 人工智能 控制理论(社会学) 机械工程 工程类 地质学 地震学 哲学 语言学 控制(管理) 并行计算
作者
Yi Zhang,Xiaoxiang Yan,Ping Xiao,Jialing Zou,Ling Hu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 016104-016104
标识
DOI:10.1088/1361-6501/ad7f74
摘要

Abstract Rotating machinery is a crucial component of industrial equipment, and the fault diagnosis of bearings and gears, as vital elements of rotating machinery, is essential since they often fail under harsh working conditions, leading to significant property losses and serious personal safety problems. However, fault data for gears and bearings are often sparse in actual condition, and it is a challenge to ensure the reliability and stability of fault diagnosis results by extracting the features of a single data. To solve the above problems, this paper proposes a fault diagnosis method that combines Transfer Learning and data fusion techniques. Firstly, in this method, two kinds of fault signals are transformed into Gramian Angular Difference Fields and Recurrence Plot. Next, a U-shaped feature fusion dual discriminator generative adversarial network is used to fuse two-dimensional images from multiple sensor data. Its feature fusion module deeply integrates the features of the two images, thereby solving the impact of single data on the reliability and stability of fault diagnosis. Moreover, open-source datasets are used for Transfer Learning training to tackle the small sample problem. Finally, a decision-level information fusion classifier, the Dual-Branch Dempster-Shafer Classifier (DB-DSC), classifies the fused images. This classifier incorporates an improved soft threshold function and D-S evidence theory to achieve adaptive gradient changes and improve the robustness and accuracy of classification results. The experimental results show the effectiveness and stability of the proposed method, and the generated images get high score in several metrics. The average classification accuracy of the classification network reaches 93% and 92.5% on the two datasets, Therefore, the proposed method exhibits strong fault diagnosis capabilities under the small sample conditions of bearings and gears.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优雅枫叶完成签到,获得积分20
1秒前
量子星尘发布了新的文献求助10
1秒前
顺心含蕾应助EIS采纳,获得10
3秒前
B站萧亚轩发布了新的文献求助10
4秒前
安元菱完成签到 ,获得积分10
4秒前
4秒前
4秒前
冷静宛海完成签到,获得积分10
5秒前
5秒前
6秒前
fugdu发布了新的文献求助10
6秒前
时舒完成签到 ,获得积分10
6秒前
自信的柠檬完成签到,获得积分20
7秒前
8秒前
善学以致用应助ABC的风格采纳,获得10
9秒前
baron_lin发布了新的文献求助10
9秒前
研友_LN7x6n发布了新的文献求助30
10秒前
852应助风风采纳,获得10
10秒前
Dailalala完成签到,获得积分10
10秒前
11秒前
安静心情发布了新的文献求助10
11秒前
丘比特应助竞鹤采纳,获得10
11秒前
香蕉觅云应助高很帅采纳,获得10
11秒前
12秒前
12秒前
司空天磊发布了新的文献求助10
12秒前
Hydaniel发布了新的文献求助10
12秒前
dd36完成签到,获得积分10
13秒前
昵称11发布了新的文献求助10
15秒前
Owen应助Huguizhou采纳,获得10
15秒前
韩涵完成签到 ,获得积分10
15秒前
充电宝应助2499297293采纳,获得10
15秒前
aich完成签到,获得积分10
15秒前
鲅鱼圈完成签到,获得积分10
16秒前
17秒前
一朵梅花完成签到,获得积分10
17秒前
咕噜仔完成签到,获得积分10
18秒前
汉堡包应助科研通管家采纳,获得10
18秒前
18秒前
Orange应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629991
求助须知:如何正确求助?哪些是违规求助? 4721324
关于积分的说明 14972153
捐赠科研通 4788008
什么是DOI,文献DOI怎么找? 2556688
邀请新用户注册赠送积分活动 1517740
关于科研通互助平台的介绍 1478342