An Balanced, and Scalable Graph-Based Multiview Clustering Method

聚类分析 计算机科学 相关聚类 数据挖掘 CURE数据聚类算法 可扩展性 图形 树冠聚类算法 数据流聚类 约束聚类 聚类系数 人工智能 模式识别(心理学) 理论计算机科学 数据库
作者
Zihua Zhao,Feiping Nie,Rong Wang,Zheng Wang,Xuelong Li
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:36 (12): 7643-7656 被引量:1
标识
DOI:10.1109/tkde.2024.3443534
摘要

In recent years, graph-based multiview clustering methods have become a research hotspot in the clustering field. However, most existing methods lack consideration of cluster balance in their results. In fact, cluster balance is crucial in many real-world scenarios. Additionally, graph-based multiview clustering methods often suffer from high time consumption and cannot handle large-scale datasets. To address these issues, this paper proposes a novel graph-based multiview clustering method. The method is built upon the bipartite graph. Specifically, it employs a label propagation mechanism to update the smaller anchor label matrix rather than the sample label matrix, significantly reducing the computational cost. The introduced balance constraint in the proposed model contributes to achieving balanced clustering results. The entire clustering model combines information from multiple views through graph fusion. The joint graph and view weight parameters in the model are obtained through task-driven self-supervised learning. Moreover, the model can directly obtain clustering results without the need for the two-stage processing typically used in general spectral clustering. Finally, extensive experiments on toy datasets and real-world datasets are conducted to validate the superiority of the proposed method in terms of clustering performance, clustering balance, and time expenditure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助XXF采纳,获得10
刚刚
1秒前
2秒前
饺子发布了新的文献求助10
2秒前
2秒前
李健应助莉莉采纳,获得10
2秒前
2秒前
科研通AI2S应助cchi采纳,获得30
3秒前
SONG发布了新的文献求助10
3秒前
zjh发布了新的文献求助10
4秒前
4秒前
可爱的函函应助kx采纳,获得10
4秒前
4秒前
安静的水风完成签到,获得积分10
5秒前
白白白发布了新的文献求助10
5秒前
6秒前
6秒前
KKKKK完成签到,获得积分10
6秒前
6秒前
6秒前
喜悦中道完成签到,获得积分10
6秒前
tjy发布了新的文献求助10
7秒前
所所应助123采纳,获得10
7秒前
8秒前
现代的大叔完成签到,获得积分20
8秒前
马季发布了新的文献求助10
8秒前
8秒前
cc完成签到 ,获得积分10
8秒前
9秒前
wanci应助只因太美采纳,获得10
9秒前
anny2022发布了新的文献求助10
9秒前
所所应助1111采纳,获得10
10秒前
10秒前
hff完成签到 ,获得积分10
10秒前
11秒前
xiao发布了新的文献求助10
11秒前
11秒前
研友_VZG7GZ应助SONG采纳,获得10
12秒前
凳子琪发布了新的文献求助10
12秒前
meo应助个性的傲安采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3552733
求助须知:如何正确求助?哪些是违规求助? 3128816
关于积分的说明 9379625
捐赠科研通 2827928
什么是DOI,文献DOI怎么找? 1554818
邀请新用户注册赠送积分活动 725573
科研通“疑难数据库(出版商)”最低求助积分说明 715031