材料科学
钙钛矿(结构)
开路电压
能量转换效率
钝化
带隙
光电子学
钙钛矿太阳能电池
太阳能电池
电压
混合太阳能电池
纳米技术
聚合物太阳能电池
化学工程
电气工程
图层(电子)
工程类
作者
Junyi Huang,Zhiguo Zhang,Yanbin Zhu,Haixuan Yu,Xiongjie Li,Zhirong Liu,Samrana Kazim,Yong Hu,Wanpeng Yang,Xiaoting Ma,Letian Dai,Shahzada Ahmad,Yan Shen,Mingkui Wang
标识
DOI:10.1002/aenm.202402469
摘要
Abstract This work proposes a methodology to increase the open‐circuit voltage of perovskite solar cells via modulating the buried interface using π‐conjugated molecules, featuring a push‐pull electronic structure configuration. In the planar perovskite solar cells using tin oxide nanocrystal as an electron transport layer, the 2‐methyl‐1‐aminobenzene derivatives with 4‐(Heptafluoropropan)‐2‐methylaniline notable not only reduce the interfacial energy barrier but also passivate the defects at the buried interface. This modulation enhances the open circuit voltage of Cs 0.05 (FA 0.85 MA 0.15 ) 0.95 Pb(I 0.85 Br 0.15 ) 3 (bandgap ≈1.60 eV) perovskite solar cell to a high value of 1.241 V and thus the power conversion efficiency to 24.16% under standard testing condition. An even higher efficiency of 25.11% can be achieved when employing in the Cs 0.05 MA 0.05 FA 0.9 PbI 3 (bandgap ≈1.54 eV) perovskite solar cell. The open circuit voltage (1.241 V) is among the highest in triple‐cation perovskite solar cells which reaches 95% Shockley–Queisser limit. A solar‐to‐CO conversion efficiency of 11.76% can be achieved in the fabricated perovskite solar minimodule driven carbon dioxide electrolyzer. This demonstrates the potential of utilizing perovskite solar cells for CO 2 conversion as a clean and green energy environment.
科研通智能强力驱动
Strongly Powered by AbleSci AI