化学
阿切
效力
IC50型
氨基甲酸酯
乙酰胆碱酯酶
神经保护
螯合作用
铅化合物
体外
查尔酮
抑制性突触后电位
药理学
立体化学
生物化学
酶
内科学
有机化学
医学
作者
Rui Chen,Xinjuan Li,Hongsong Chen,Keren Wang,Teng Xue,Jing Mi,Yujuan Ban,Gaofeng Zhu,Yi Zhou,Wu Dong,Jingfa Zhang,Zhipei Sang
标识
DOI:10.1016/j.ejmech.2023.115253
摘要
Accumulation of evidences suggested that excessive amounts of AChE and BuChE in the brain of AD patients at the different stage of AD, which could hydrolyze ACh and accelerated Aβ aggregation. To develop new "hidden" multifunctional agents through AChE/BuChE would be a promising strategy to treat AD. To this end, firstly, a series of chalcone derivatives with chelating property was designed and synthesized. The in vitro results showed that compound 3f indicated significant selective MAO-B inhibitory activity (IC50 = 0.67 μM) and remarkable anti-inflammatory property. It also significantly inhibited self-induced Aβ1-42 aggregation and showed remarkable neuroprotective effects on Aβ25-35-induced PC12 cell injury. Furthermore, compound 3f was a selective metal chelator and could inhibit Cu2+-induced Aβ1-42 aggregation. Based on this, the carbamate fragment was introduced to compound 3f to obtain carbamate derivatives. The biological activity results exhibited that compound 4b showed good BBB permeability, good AChE inhibitory potency (IC50 = 5.3 μM), moderate BuChE inhibitory potency (IC50 = 12.4 μM), significant MAO-B inhibitory potency, anti-inflammation potency on LPS-induced BV-2 cells and neuroprotective effects on Aβ25-35-induced PC12 cell injury. Compared with 3f, compound 4b did not show obvious chelation property. Significantly, compound 4b could be activated by AChE/BuChE following inhibition of AChE/BuChE to liberate an active multifunctional chelator 3f, which was consistent with our original intention. More importantly, compounds 3f and 4b presented favorable ADME properties and good stability in artificial gastrointestinal fluid, blood plasma and rat liver microsomes. The in vivo results suggested that compound 4b (0.0195 μg/mL) could significantly improve dyskinesia and reaction capacity of the AlCl3-induced zebrafish AD model by increasing the level of ACh. Together our data suggest that compound 4b was a promising "hidden" multifunctional agent by AChE/BuChE, and this strategy deserved further development for the treatment of AD.
科研通智能强力驱动
Strongly Powered by AbleSci AI