Porosity and permeability prediction using a transformer and periodic long short-term network

岩石物理学 计算机科学 油藏计算 杠杆(统计) 变压器 储层建模 人工智能 网络体系结构 深度学习 测井 卷积神经网络 合成数据 磁导率 编码器 机器学习 多孔性 人工神经网络 数据挖掘 循环神经网络 地质学 石油工程 工程类 岩土工程 电气工程 操作系统 计算机安全 生物 电压 遗传学
作者
Liuqing Yang,Sergey Fomel,Shoudong Wang,Xiaohong Chen,Wei Chen,Omar M. Saad,Yangkang Chen
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:88 (1): WA293-WA308 被引量:15
标识
DOI:10.1190/geo2022-0150.1
摘要

Effective reservoir parameter prediction is important for subsurface characterization and understanding fluid migration. However, conventional methods for obtaining porosity and permeability are based on either core measurements or mathematical/petrophysical modeling, which are expensive or inefficient. In this study, we develop a reliable and low-cost deep learning (DL) framework for reservoir permeability and porosity prediction from real logging data at different regions. We leverage an advanced learning architecture (i.e., the transformer model) and design a new regression network (RPTransformer) that is sensitive to the depth period change of the logging data. The RPTransformer is composed of 1D convolutional, long short-term memory (LSTM), and transformer layers. First, we use a 1D convolutional layer for the first layer of the network to extract significant features from the logging data. Then, the nonlinear mapping relationships between logging data and reservoir parameters are established using several LSTM layers with a period parameter. Afterward, we use the encoder in the vision transformer with the self-attention mechanism to further extract logging data features. The developed network is a data-driven supervised learning framework and indicates highly accurate and robust prediction results when applied to different geographic regions. To demonstrate the reliable prediction performance of our network, we compare it with several classic machine learning and state-of-the-art DL methods, e.g., random forest, multilayer LSTM, and long short-term time-series network (LSTNet). More importantly, we find the generalization and uncertainty of the network in real-world applications through comprehensive numerical experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lee完成签到 ,获得积分10
1秒前
火星仙人掌完成签到 ,获得积分10
1秒前
吾侪完成签到,获得积分20
2秒前
神勇的天菱完成签到,获得积分10
2秒前
KOBE94FU完成签到,获得积分10
2秒前
M95发布了新的文献求助10
3秒前
刘奶奶的牛奶完成签到,获得积分10
3秒前
桥豆麻袋完成签到,获得积分10
3秒前
3秒前
ttkd11完成签到,获得积分10
3秒前
4秒前
pcr163应助CyrusSo524采纳,获得250
4秒前
xr完成签到 ,获得积分10
4秒前
彼黍离离完成签到 ,获得积分10
4秒前
yiyiyi完成签到,获得积分10
4秒前
乐乐乐乐乐乐应助Luo采纳,获得10
5秒前
5秒前
研友_VZG7GZ应助吾侪采纳,获得10
5秒前
vicky完成签到,获得积分10
5秒前
Johnlian完成签到 ,获得积分10
6秒前
6秒前
爱笑的访梦完成签到,获得积分10
7秒前
屋子完成签到,获得积分10
7秒前
小谢完成签到,获得积分10
8秒前
菠菜发布了新的文献求助50
8秒前
优雅的雁凡完成签到,获得积分10
8秒前
8秒前
火星上的百川完成签到,获得积分10
9秒前
SYLH应助明理的青寒采纳,获得10
9秒前
CHEN完成签到 ,获得积分10
10秒前
caozhi发布了新的文献求助10
11秒前
11秒前
无私鹏涛完成签到,获得积分10
11秒前
东东完成签到,获得积分10
12秒前
zhaoty完成签到,获得积分10
13秒前
13秒前
13秒前
Mr.Jian完成签到,获得积分10
13秒前
ff0110完成签到,获得积分10
14秒前
茴香完成签到,获得积分10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953555
求助须知:如何正确求助?哪些是违规求助? 3499137
关于积分的说明 11094114
捐赠科研通 3229679
什么是DOI,文献DOI怎么找? 1785728
邀请新用户注册赠送积分活动 869490
科研通“疑难数据库(出版商)”最低求助积分说明 801478