Deep learning‐based motion compensation for four‐dimensional cone‐beam computed tomography (4D‐CBCT) reconstruction

成像体模 人工智能 锥束ct 卷积神经网络 计算机科学 迭代重建 工件(错误) 计算机视觉 图像质量 均方误差 深度学习 模式识别(心理学) 核医学 数学 计算机断层摄影术 图像(数学) 医学 放射科 统计
作者
Zhehao Zhang,Jiaming Liu,Deshan Yang,Ulugbek S. Kamilov,Geoffrey D. Hugo
出处
期刊:Medical Physics [Wiley]
卷期号:50 (2): 808-820 被引量:15
标识
DOI:10.1002/mp.16103
摘要

Abstract Background Motion‐compensated (MoCo) reconstruction shows great promise in improving four‐dimensional cone‐beam computed tomography (4D‐CBCT) image quality. MoCo reconstruction for a 4D‐CBCT could be more accurate using motion information at the CBCT imaging time than that obtained from previous 4D‐CT scans. However, such data‐driven approaches are hampered by the quality of initial 4D‐CBCT images used for motion modeling. Purpose This study aims to develop a deep‐learning method to generate high‐quality motion models for MoCo reconstruction to improve the quality of final 4D‐CBCT images. Methods A 3D artifact‐reduction convolutional neural network (CNN) was proposed to improve conventional phase‐correlated Feldkamp–Davis–Kress (PCF) reconstructions by reducing undersampling‐induced streaking artifacts while maintaining motion information. The CNN‐generated artifact‐mitigated 4D‐CBCT images (CNN enhanced) were then used to build a motion model which was used by MoCo reconstruction (CNN+MoCo). The proposed procedure was evaluated using in‐vivo patient datasets, an extended cardiac‐torso (XCAT) phantom, and the public SPARE challenge datasets. The quality of reconstructed images for XCAT phantom and SPARE datasets was quantitatively assessed using root‐mean‐square‐error (RMSE) and normalized cross‐correlation (NCC). Results The trained CNN effectively reduced the streaking artifacts of PCF CBCT images for all datasets. More detailed structures can be recovered using the proposed CNN+MoCo reconstruction procedure. XCAT phantom experiments showed that the accuracy of estimated motion model using CNN enhanced images was greatly improved over PCF. CNN+MoCo showed lower RMSE and higher NCC compared to PCF, CNN enhanced and conventional MoCo. For the SPARE datasets, the average (± standard deviation) RMSE in mm −1 for body region of PCF, CNN enhanced, conventional MoCo and CNN+MoCo were 0.0040 ± 0.0009, 0.0029 ± 0.0002, 0.0024 ± 0.0003 and 0.0021 ± 0.0003. Corresponding NCC were 0.84 ± 0.05, 0.91 ± 0.05, 0.91 ± 0.05 and 0.93 ± 0.04. Conclusions CNN‐based artifact reduction can substantially reduce the artifacts in the initial 4D‐CBCT images. The improved images could be used to enhance the motion modeling and ultimately improve the quality of the final 4D‐CBCT images reconstructed using MoCo.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烂漫板栗发布了新的文献求助10
刚刚
汉堡包应助鲁滨逊采纳,获得10
刚刚
刚刚
wanci应助WW采纳,获得10
刚刚
wangfan发布了新的文献求助10
刚刚
1秒前
1秒前
wanci应助潮湿梦采纳,获得10
1秒前
安静的难破完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
DESERVE.完成签到,获得积分10
2秒前
2秒前
CipherSage应助高贵树叶采纳,获得10
2秒前
online1881发布了新的文献求助10
2秒前
3秒前
xxd完成签到,获得积分10
3秒前
3秒前
赵文丽发布了新的文献求助10
3秒前
安徒完成签到,获得积分10
4秒前
tetrakis发布了新的文献求助10
4秒前
4秒前
5秒前
Kimo完成签到,获得积分10
5秒前
科研通AI6应助饿了采纳,获得10
6秒前
6秒前
米里迷路完成签到,获得积分10
6秒前
柳柳发布了新的文献求助10
6秒前
在水一方应助无聊的夜山采纳,获得10
6秒前
大模型应助机智小兔子采纳,获得10
6秒前
7秒前
香蕉觅云应助yanxueni采纳,获得10
7秒前
AM.完成签到,获得积分10
7秒前
灰灰发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
爆米花应助科研小白采纳,获得10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Machine Learning in Chemistry 500
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5192815
求助须知:如何正确求助?哪些是违规求助? 4375670
关于积分的说明 13626094
捐赠科研通 4230144
什么是DOI,文献DOI怎么找? 2320319
邀请新用户注册赠送积分活动 1318661
关于科研通互助平台的介绍 1268974