已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning‐based motion compensation for four‐dimensional cone‐beam computed tomography (4D‐CBCT) reconstruction

成像体模 人工智能 锥束ct 卷积神经网络 计算机科学 迭代重建 工件(错误) 计算机视觉 图像质量 均方误差 深度学习 模式识别(心理学) 核医学 数学 计算机断层摄影术 图像(数学) 医学 放射科 统计
作者
Zhehao Zhang,Jiaming Liu,Deshan Yang,Ulugbek S. Kamilov,Geoffrey D. Hugo
出处
期刊:Medical Physics [Wiley]
卷期号:50 (2): 808-820 被引量:15
标识
DOI:10.1002/mp.16103
摘要

Abstract Background Motion‐compensated (MoCo) reconstruction shows great promise in improving four‐dimensional cone‐beam computed tomography (4D‐CBCT) image quality. MoCo reconstruction for a 4D‐CBCT could be more accurate using motion information at the CBCT imaging time than that obtained from previous 4D‐CT scans. However, such data‐driven approaches are hampered by the quality of initial 4D‐CBCT images used for motion modeling. Purpose This study aims to develop a deep‐learning method to generate high‐quality motion models for MoCo reconstruction to improve the quality of final 4D‐CBCT images. Methods A 3D artifact‐reduction convolutional neural network (CNN) was proposed to improve conventional phase‐correlated Feldkamp–Davis–Kress (PCF) reconstructions by reducing undersampling‐induced streaking artifacts while maintaining motion information. The CNN‐generated artifact‐mitigated 4D‐CBCT images (CNN enhanced) were then used to build a motion model which was used by MoCo reconstruction (CNN+MoCo). The proposed procedure was evaluated using in‐vivo patient datasets, an extended cardiac‐torso (XCAT) phantom, and the public SPARE challenge datasets. The quality of reconstructed images for XCAT phantom and SPARE datasets was quantitatively assessed using root‐mean‐square‐error (RMSE) and normalized cross‐correlation (NCC). Results The trained CNN effectively reduced the streaking artifacts of PCF CBCT images for all datasets. More detailed structures can be recovered using the proposed CNN+MoCo reconstruction procedure. XCAT phantom experiments showed that the accuracy of estimated motion model using CNN enhanced images was greatly improved over PCF. CNN+MoCo showed lower RMSE and higher NCC compared to PCF, CNN enhanced and conventional MoCo. For the SPARE datasets, the average (± standard deviation) RMSE in mm −1 for body region of PCF, CNN enhanced, conventional MoCo and CNN+MoCo were 0.0040 ± 0.0009, 0.0029 ± 0.0002, 0.0024 ± 0.0003 and 0.0021 ± 0.0003. Corresponding NCC were 0.84 ± 0.05, 0.91 ± 0.05, 0.91 ± 0.05 and 0.93 ± 0.04. Conclusions CNN‐based artifact reduction can substantially reduce the artifacts in the initial 4D‐CBCT images. The improved images could be used to enhance the motion modeling and ultimately improve the quality of the final 4D‐CBCT images reconstructed using MoCo.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
instill发布了新的文献求助10
1秒前
斯文败类应助舒适笑容采纳,获得10
2秒前
2秒前
cccxq发布了新的文献求助10
3秒前
科研通AI6应助yy采纳,获得10
3秒前
仰山雪完成签到 ,获得积分0
4秒前
尾状叶完成签到 ,获得积分10
4秒前
xiaofan_www发布了新的文献求助10
5秒前
小吴要努力科研完成签到 ,获得积分10
6秒前
李健的小迷弟应助cccxq采纳,获得10
7秒前
dddnnn完成签到,获得积分10
7秒前
TongKY完成签到 ,获得积分10
8秒前
9秒前
修水县1个科研人完成签到 ,获得积分10
9秒前
猫的淡淡完成签到,获得积分10
10秒前
lzz发布了新的文献求助10
11秒前
13秒前
科目三应助科研通管家采纳,获得200
13秒前
情怀应助科研通管家采纳,获得30
13秒前
Lucas应助科研通管家采纳,获得10
13秒前
adkdad完成签到,获得积分10
18秒前
19秒前
小夜子完成签到 ,获得积分10
22秒前
傻芙芙的完成签到,获得积分10
22秒前
ding应助yy采纳,获得10
23秒前
fantasy发布了新的文献求助10
24秒前
Ava应助刘秋伶采纳,获得10
26秒前
寂寞的诗云完成签到,获得积分10
29秒前
31秒前
欢喜的文轩完成签到 ,获得积分10
34秒前
滴嘟滴嘟完成签到 ,获得积分10
35秒前
Crisp完成签到 ,获得积分10
35秒前
好运来完成签到 ,获得积分10
37秒前
我是老大应助世良采纳,获得10
39秒前
39秒前
怡然的复天完成签到,获得积分10
41秒前
华仔应助刻苦乌冬面采纳,获得10
42秒前
风中的诗双完成签到,获得积分10
42秒前
乐乐应助xuan采纳,获得10
44秒前
instill完成签到,获得积分10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650331
求助须知:如何正确求助?哪些是违规求助? 4780577
关于积分的说明 15051956
捐赠科研通 4809289
什么是DOI,文献DOI怎么找? 2572125
邀请新用户注册赠送积分活动 1528281
关于科研通互助平台的介绍 1487161