Deep learning‐based motion compensation for four‐dimensional cone‐beam computed tomography (4D‐CBCT) reconstruction

成像体模 人工智能 锥束ct 卷积神经网络 计算机科学 迭代重建 工件(错误) 计算机视觉 图像质量 均方误差 深度学习 模式识别(心理学) 核医学 数学 计算机断层摄影术 图像(数学) 医学 放射科 统计
作者
Zhehao Zhang,Jiaming Liu,Deshan Yang,Ulugbek S. Kamilov,Geoffrey D. Hugo
出处
期刊:Medical Physics [Wiley]
卷期号:50 (2): 808-820 被引量:10
标识
DOI:10.1002/mp.16103
摘要

Abstract Background Motion‐compensated (MoCo) reconstruction shows great promise in improving four‐dimensional cone‐beam computed tomography (4D‐CBCT) image quality. MoCo reconstruction for a 4D‐CBCT could be more accurate using motion information at the CBCT imaging time than that obtained from previous 4D‐CT scans. However, such data‐driven approaches are hampered by the quality of initial 4D‐CBCT images used for motion modeling. Purpose This study aims to develop a deep‐learning method to generate high‐quality motion models for MoCo reconstruction to improve the quality of final 4D‐CBCT images. Methods A 3D artifact‐reduction convolutional neural network (CNN) was proposed to improve conventional phase‐correlated Feldkamp–Davis–Kress (PCF) reconstructions by reducing undersampling‐induced streaking artifacts while maintaining motion information. The CNN‐generated artifact‐mitigated 4D‐CBCT images (CNN enhanced) were then used to build a motion model which was used by MoCo reconstruction (CNN+MoCo). The proposed procedure was evaluated using in‐vivo patient datasets, an extended cardiac‐torso (XCAT) phantom, and the public SPARE challenge datasets. The quality of reconstructed images for XCAT phantom and SPARE datasets was quantitatively assessed using root‐mean‐square‐error (RMSE) and normalized cross‐correlation (NCC). Results The trained CNN effectively reduced the streaking artifacts of PCF CBCT images for all datasets. More detailed structures can be recovered using the proposed CNN+MoCo reconstruction procedure. XCAT phantom experiments showed that the accuracy of estimated motion model using CNN enhanced images was greatly improved over PCF. CNN+MoCo showed lower RMSE and higher NCC compared to PCF, CNN enhanced and conventional MoCo. For the SPARE datasets, the average (± standard deviation) RMSE in mm −1 for body region of PCF, CNN enhanced, conventional MoCo and CNN+MoCo were 0.0040 ± 0.0009, 0.0029 ± 0.0002, 0.0024 ± 0.0003 and 0.0021 ± 0.0003. Corresponding NCC were 0.84 ± 0.05, 0.91 ± 0.05, 0.91 ± 0.05 and 0.93 ± 0.04. Conclusions CNN‐based artifact reduction can substantially reduce the artifacts in the initial 4D‐CBCT images. The improved images could be used to enhance the motion modeling and ultimately improve the quality of the final 4D‐CBCT images reconstructed using MoCo.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秋名的86上山了完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
科研通AI2S应助小馋猫采纳,获得10
3秒前
小暴发布了新的文献求助10
3秒前
8秒前
9秒前
9秒前
Freya发布了新的文献求助30
10秒前
烟花应助小暴采纳,获得10
10秒前
Magician应助DD采纳,获得20
11秒前
11秒前
阿信必发JACS应助zouxing采纳,获得10
11秒前
完美世界应助汤汤采纳,获得10
12秒前
林雅完成签到 ,获得积分10
13秒前
gy79210发布了新的文献求助10
13秒前
14秒前
刻苦不弱发布了新的文献求助10
14秒前
14秒前
17秒前
hcdb完成签到,获得积分10
17秒前
18秒前
wanci应助科研通管家采纳,获得10
18秒前
情怀应助科研通管家采纳,获得10
18秒前
汉堡包应助科研通管家采纳,获得10
18秒前
完美世界应助科研通管家采纳,获得10
18秒前
19秒前
20秒前
21秒前
小暴完成签到,获得积分10
22秒前
舒心胜完成签到 ,获得积分10
22秒前
redpigger发布了新的文献求助10
23秒前
疯狂的冒菜完成签到,获得积分10
25秒前
27秒前
大个应助67采纳,获得10
28秒前
29秒前
橙子橙子大橙子完成签到,获得积分10
29秒前
30秒前
tom发布了新的文献求助10
30秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3352752
求助须知:如何正确求助?哪些是违规求助? 2977749
关于积分的说明 8681356
捐赠科研通 2658744
什么是DOI,文献DOI怎么找? 1455921
科研通“疑难数据库(出版商)”最低求助积分说明 674190
邀请新用户注册赠送积分活动 664810