已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning‐based motion compensation for four‐dimensional cone‐beam computed tomography (4D‐CBCT) reconstruction

成像体模 人工智能 锥束ct 卷积神经网络 计算机科学 迭代重建 工件(错误) 计算机视觉 图像质量 均方误差 深度学习 模式识别(心理学) 核医学 数学 计算机断层摄影术 图像(数学) 医学 放射科 统计
作者
Zhehao Zhang,Jiaming Liu,Deshan Yang,Ulugbek S. Kamilov,Geoffrey D. Hugo
出处
期刊:Medical Physics [Wiley]
卷期号:50 (2): 808-820 被引量:15
标识
DOI:10.1002/mp.16103
摘要

Abstract Background Motion‐compensated (MoCo) reconstruction shows great promise in improving four‐dimensional cone‐beam computed tomography (4D‐CBCT) image quality. MoCo reconstruction for a 4D‐CBCT could be more accurate using motion information at the CBCT imaging time than that obtained from previous 4D‐CT scans. However, such data‐driven approaches are hampered by the quality of initial 4D‐CBCT images used for motion modeling. Purpose This study aims to develop a deep‐learning method to generate high‐quality motion models for MoCo reconstruction to improve the quality of final 4D‐CBCT images. Methods A 3D artifact‐reduction convolutional neural network (CNN) was proposed to improve conventional phase‐correlated Feldkamp–Davis–Kress (PCF) reconstructions by reducing undersampling‐induced streaking artifacts while maintaining motion information. The CNN‐generated artifact‐mitigated 4D‐CBCT images (CNN enhanced) were then used to build a motion model which was used by MoCo reconstruction (CNN+MoCo). The proposed procedure was evaluated using in‐vivo patient datasets, an extended cardiac‐torso (XCAT) phantom, and the public SPARE challenge datasets. The quality of reconstructed images for XCAT phantom and SPARE datasets was quantitatively assessed using root‐mean‐square‐error (RMSE) and normalized cross‐correlation (NCC). Results The trained CNN effectively reduced the streaking artifacts of PCF CBCT images for all datasets. More detailed structures can be recovered using the proposed CNN+MoCo reconstruction procedure. XCAT phantom experiments showed that the accuracy of estimated motion model using CNN enhanced images was greatly improved over PCF. CNN+MoCo showed lower RMSE and higher NCC compared to PCF, CNN enhanced and conventional MoCo. For the SPARE datasets, the average (± standard deviation) RMSE in mm −1 for body region of PCF, CNN enhanced, conventional MoCo and CNN+MoCo were 0.0040 ± 0.0009, 0.0029 ± 0.0002, 0.0024 ± 0.0003 and 0.0021 ± 0.0003. Corresponding NCC were 0.84 ± 0.05, 0.91 ± 0.05, 0.91 ± 0.05 and 0.93 ± 0.04. Conclusions CNN‐based artifact reduction can substantially reduce the artifacts in the initial 4D‐CBCT images. The improved images could be used to enhance the motion modeling and ultimately improve the quality of the final 4D‐CBCT images reconstructed using MoCo.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
北克完成签到 ,获得积分10
2秒前
2秒前
可爱安白完成签到,获得积分10
2秒前
Leon Lai完成签到,获得积分10
2秒前
泡泡完成签到 ,获得积分10
2秒前
qqq完成签到,获得积分10
2秒前
fang完成签到 ,获得积分0
4秒前
郭郭完成签到 ,获得积分10
5秒前
无花果应助俊逸夜阑采纳,获得10
5秒前
ccc发布了新的文献求助10
5秒前
mbq完成签到,获得积分10
5秒前
朴实山兰完成签到 ,获得积分10
5秒前
科研狗完成签到,获得积分10
6秒前
脑子不转弯完成签到 ,获得积分10
8秒前
认真的寒香完成签到,获得积分10
8秒前
12完成签到 ,获得积分10
8秒前
10秒前
10秒前
10秒前
大模型应助Bi8bo采纳,获得10
12秒前
环走鱼尾纹完成签到 ,获得积分10
12秒前
xiaohei完成签到,获得积分10
14秒前
传奇3应助钰L采纳,获得10
15秒前
任小萱完成签到,获得积分10
15秒前
初昀杭完成签到 ,获得积分10
16秒前
hhhhh完成签到 ,获得积分10
16秒前
默笙完成签到 ,获得积分10
16秒前
17秒前
李健的小迷弟应助ZLN666采纳,获得10
17秒前
zzzrrr完成签到 ,获得积分10
18秒前
正在努力的学术小垃圾完成签到 ,获得积分10
18秒前
脑洞疼应助fduqyy采纳,获得10
18秒前
無端完成签到 ,获得积分10
19秒前
19秒前
可靠诗筠完成签到 ,获得积分10
19秒前
20秒前
qian完成签到 ,获得积分10
21秒前
俊逸夜阑发布了新的文献求助10
21秒前
L2951完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458670
求助须知:如何正确求助?哪些是违规求助? 4564690
关于积分的说明 14296542
捐赠科研通 4489739
什么是DOI,文献DOI怎么找? 2459274
邀请新用户注册赠送积分活动 1448998
关于科研通互助平台的介绍 1424502