Discovery of novel TRPV1 modulators through machine learning‐based molecular docking and molecular similarity searching

虚拟筛选 TRPV1型 对接(动物) 计算生物学 瞬时受体电位通道 结构相似性 化学 兴奋剂 部分激动剂 药物发现 计算机科学 受体 生物化学 生物 医学 护理部
作者
Xinmiao Wei,Qifan Yang,Zhijiang Yang,Tengxin Huang,Hang Yang,Liangliang Wang,Li Pan,Junjie Ding
出处
期刊:Chemical Biology & Drug Design [Wiley]
卷期号:102 (3): 409-423 被引量:5
标识
DOI:10.1111/cbdd.14270
摘要

Abstract The transient receptor potential vanilloid 1 (TRPV1) channel belongs to the transient receptor potential channel superfamily and participates in many physiological processes. TRPV1 modulators (both agonists and antagonists) can effectively inhibit pain caused by various factors and have curative effects in various diseases, such as itch, cancer, and cardiovascular diseases. Therefore, the development of TRPV1 channel modulators is of great importance. In this study, the structure‐based virtual screening and ligand‐based virtual screening methods were used to screen compound databases respectively. In the structure‐based virtual screening route, a full‐length human TRPV1 protein was first constructed, three molecular docking methods with different precisions were performed based on the hTRPV1 structure, and a machine learning‐based rescoring model by the XGBoost algorithm was constructed to enrich active compounds. In the ligand‐based virtual screening route, the ROCS program was used for 3D shape similarity searching and the EON program was used for electrostatic similarity searching. Final 77 compounds were selected from two routes for in vitro assays. The results showed that 8 of them were identified as active compounds, including three hits with IC 50 values close to capsazepine. In addition, one hit is a partial agonist with both agonistic and antagonistic activity. The mechanisms of some active compounds were investigated by molecular dynamics simulation, which explained their agonism or antagonism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
六六发布了新的文献求助10
2秒前
迟大猫应助欣喜采纳,获得10
2秒前
积极问晴发布了新的文献求助10
2秒前
3秒前
可爱的函函应助THFA采纳,获得10
4秒前
Lazarus发布了新的文献求助10
5秒前
星辰完成签到,获得积分10
5秒前
lifangqi完成签到,获得积分10
7秒前
田様应助srandrs采纳,获得10
10秒前
wyx完成签到,获得积分10
11秒前
李健应助lifangqi采纳,获得10
11秒前
江北发布了新的文献求助10
12秒前
七月完成签到,获得积分10
13秒前
科研通AI5应助的的墨采纳,获得10
14秒前
15秒前
T_MC郭完成签到,获得积分10
16秒前
17秒前
江河不可停完成签到,获得积分10
17秒前
Y.fan完成签到 ,获得积分10
17秒前
18秒前
jwb711发布了新的文献求助10
20秒前
深情安青应助积极问晴采纳,获得10
21秒前
芹菜煎蛋发布了新的文献求助10
21秒前
22秒前
23秒前
royan2完成签到,获得积分10
23秒前
rebeccahu应助asdfqwer采纳,获得10
24秒前
25秒前
英俊的铭应助jwb711采纳,获得10
25秒前
25秒前
26秒前
27秒前
丸子完成签到,获得积分10
28秒前
29秒前
科研小崽发布了新的文献求助10
29秒前
ziyuexu发布了新的文献求助10
29秒前
李健应助奋斗的雅柔采纳,获得30
31秒前
xioabu发布了新的文献求助10
32秒前
科研通AI5应助汤圆采纳,获得10
32秒前
33秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
Recent progress and new developments in post-combustion carbon-capture technology with reactive solvents 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538611
求助须知:如何正确求助?哪些是违规求助? 3116370
关于积分的说明 9324948
捐赠科研通 2814129
什么是DOI,文献DOI怎么找? 1546497
邀请新用户注册赠送积分活动 720575
科研通“疑难数据库(出版商)”最低求助积分说明 712086