荧光团
费斯特共振能量转移
纳米团簇
化学
分子动力学
荧光
二聚体
单体
化学物理
能量转移
纳米材料
纳米技术
计算化学
聚合物
材料科学
物理
有机化学
量子力学
作者
Kyunglim Pyo,María Francisca Matus,Eero Hulkko,Pasi Myllyperkiö,Sami Malola,Tatu Kumpulainen,Hannu Häkkinen,Mika Pettersson
摘要
Understanding the dynamics of Förster resonance energy transfer (FRET) in fluorophore-functionalized nanomaterials is critical for developing and utilizing such materials in biomedical imaging and optical sensing applications. However, structural dynamics of noncovalently bound systems have a significant effect on the FRET properties affecting their applications in solutions. Here, we study the dynamics of the FRET in atomistic detail by disclosing the structural dynamics of the noncovalently bound azadioxotriangulenium dye (KU) and atomically precise gold nanocluster (Au25(p-MBA)18, p-MBA = para-mercaptobenzoic acid) with a combination of experimental and computational methods. Two distinct subpopulations involved in the energy transfer process between the KU dye and the Au25(p-MBA)18 nanoclusters were resolved by time-resolved fluorescence experiments. Molecular dynamics simulations revealed that KU is bound to the surface of Au25(p-MBA)18 by interacting with the p-MBA ligands as a monomer and as a π–π stacked dimer where the center-to-center distance of the monomers to Au25(p-MBA)18 is separated by ∼0.2 nm, thus explaining the experimental observations. The ratio of the observed energy transfer rates was in reasonably good agreement with the well-known 1/R6 distance dependence for FRET. This work discloses the structural dynamics of the noncovalently bound nanocluster-based system in water solution, providing new insight into the dynamics and energy transfer mechanism of the fluorophore-functionalized gold nanocluster at an atomistic level.
科研通智能强力驱动
Strongly Powered by AbleSci AI