Applications of Artificial Intelligence in PSMA PET/CT for Prostate Cancer Imaging

医学 前列腺癌 正电子发射断层摄影术 人工智能 人工智能应用 医学物理学 谷氨酸羧肽酶Ⅱ 机器学习 核医学 癌症 计算机科学 内科学
作者
Sarah Lindgren Belal,Sophia Frantz,David Minarik,Olof Enqvist,Erik A. Wikstrom,Lars Edenbrandt,Elin Trägårdh
出处
期刊:Seminars in Nuclear Medicine [Elsevier]
卷期号:54 (1): 141-149 被引量:15
标识
DOI:10.1053/j.semnuclmed.2023.06.001
摘要

Prostate-specific membrane antigen (PSMA) positron emission tomography/computed tomography (PET/CT) has emerged as an important imaging technique for prostate cancer. The use of PSMA PET/CT is rapidly increasing, while the number of nuclear medicine physicians and radiologists to interpret these scans is limited. Additionally, there is variability in interpretation among readers. Artificial intelligence techniques, including traditional machine learning and deep learning algorithms, are being used to address these challenges and provide additional insights from the images. The aim of this scoping review was to summarize the available research on the development and applications of AI in PSMA PET/CT for prostate cancer imaging. A systematic literature search was performed in PubMed, Embase and Cinahl according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A total of 26 publications were included in the synthesis. The included studies focus on different aspects of artificial intelligence in PSMA PET/CT, including detection of primary tumor, local recurrence and metastatic lesions, lesion classification, tumor quantification and prediction/prognostication. Several studies show similar performances of artificial intelligence algorithms compared to human interpretation. Few artificial intelligence tools are approved for use in clinical practice. Major limitations include the lack of external validation and prospective design. Demonstrating the clinical impact and utility of artificial intelligence tools is crucial for their adoption in healthcare settings. To take the next step towards a clinically valuable artificial intelligence tool that provides quantitative data, independent validation studies are needed across institutions and equipment to ensure robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欧欧欧导完成签到,获得积分10
2秒前
悦耳小懒猪完成签到 ,获得积分10
3秒前
资山雁完成签到 ,获得积分10
3秒前
MM发布了新的文献求助10
4秒前
sungyoo完成签到,获得积分10
4秒前
赖建琛完成签到 ,获得积分10
4秒前
黎笙应助snow采纳,获得30
6秒前
xr完成签到,获得积分10
8秒前
guojingjing完成签到 ,获得积分10
12秒前
崔宁宁完成签到 ,获得积分10
13秒前
14秒前
快乐小恬完成签到 ,获得积分10
15秒前
Perrylin718完成签到,获得积分10
15秒前
俊俊完成签到 ,获得积分0
17秒前
周老八完成签到,获得积分10
18秒前
悦悦发布了新的文献求助10
19秒前
Hyc28441711完成签到,获得积分10
19秒前
nicheng完成签到 ,获得积分0
20秒前
22秒前
Jasper应助dddddd采纳,获得10
24秒前
QZZ发布了新的文献求助10
26秒前
yaya完成签到 ,获得积分10
28秒前
浅笑应助科研通管家采纳,获得10
30秒前
思源应助科研通管家采纳,获得30
30秒前
30秒前
Lucas应助科研通管家采纳,获得10
30秒前
星辰大海应助科研通管家采纳,获得10
30秒前
31秒前
温暖凡灵完成签到,获得积分10
31秒前
科研通AI2S应助chiyudoubao采纳,获得10
32秒前
33秒前
daididexhl完成签到,获得积分20
34秒前
34秒前
35秒前
LT完成签到 ,获得积分10
35秒前
LV完成签到 ,获得积分10
37秒前
等待寄云完成签到 ,获得积分10
37秒前
23533213发布了新的文献求助10
38秒前
dddddd发布了新的文献求助10
38秒前
WYN完成签到 ,获得积分10
41秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265696
求助须知:如何正确求助?哪些是违规求助? 2905653
关于积分的说明 8334336
捐赠科研通 2575918
什么是DOI,文献DOI怎么找? 1400269
科研通“疑难数据库(出版商)”最低求助积分说明 654712
邀请新用户注册赠送积分活动 633554