When Collaborative Federated Learning Meets Blockchain to Preserve Privacy in Healthcare

计算机科学 符号 医疗保健 服务提供商 人工智能 服务(商务) 机器学习 数学 经济增长 算术 经济 经济
作者
Zakaria Abou El Houda,Abdelhakim Hafid,Lyes Khoukhi,Bouziane Brik
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:10 (5): 2455-2465 被引量:23
标识
DOI:10.1109/tnse.2022.3211192
摘要

Data-driven Machine and Deep Learning (ML/DL) is an emerging approach that uses medical data to build robust and accurate ML/DL models that can improve clinical decisions in some critical tasks ( $e.g.,$ cancer diagnosis). However, ML/DL-based healthcare models still suffer from poor adoption due to the lack of realistic and recent medical data. The privacy nature of these medical datasets makes it difficult for clinicians and healthcare service providers, to share their sensitive data ( $i.e.,$ Patient Health Records (PHR)). Thus, privacy-aware collaboration among clinicians and healthcare service providers is expected to become essential to build robust healthcare applications supported by next-generation networking (NGN) technologies, including Beyond sixth-generation (B6G) networks. In this paper, we design a new framework, called HealthFed, that leverages Federated Learning (FL) and blockchain technologies to enable privacy-preserving and distributed learning among multiple clinician collaborators. Specifically, HealthFed enables several distributed SDN-based domains, clinician collaborators, to securely collaborate in order to build robust healthcare ML-based models, while ensuring the privacy of each clinician participant. In addition, HealthFed ensures a secure aggregation of local model updates by leveraging a secure multiparty computation scheme ( $i.e.,$ Secure Multiparty Computation (SMPC)). Furthermore, we design a novel blockchain-based scheme to facilitate/maintain the collaboration among clinician collaborators, in a fully decentralized, trustworthy, and flexible way. We conduct several experiments to evaluate HealthFed; in-depth experiments results using public Breast Cancer dataset show the efficiency of HealthFed, by not only ensuring the privacy of each collaborator's sensitive data, but also providing an accurate learning models, which makes HealthFed a promising framework for healthcare systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助高贵的老太采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
不孤独的发卡完成签到,获得积分10
1秒前
wendy.lv完成签到,获得积分10
2秒前
传奇3应助微眠采纳,获得10
2秒前
2秒前
斑马兽发布了新的文献求助10
2秒前
3秒前
哈哈发布了新的文献求助10
3秒前
烟花应助斯文墨镜采纳,获得10
3秒前
keyanqianjin发布了新的文献求助10
3秒前
小马甲应助爱喝冰可乐采纳,获得10
4秒前
yscygsy发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
5秒前
wait完成签到,获得积分10
6秒前
6秒前
6秒前
9秒前
西门不二发布了新的文献求助10
9秒前
wuxidixi完成签到 ,获得积分10
9秒前
失眠的契完成签到,获得积分10
10秒前
浮游应助燕天与采纳,获得10
11秒前
奥特曼发布了新的文献求助200
11秒前
Akim应助郭嘉仪采纳,获得10
11秒前
华仔应助yulong采纳,获得10
11秒前
11秒前
完美世界应助1234采纳,获得10
12秒前
12秒前
12秒前
阳光的冷霜完成签到,获得积分10
12秒前
hoh发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
孟冬发布了新的文献求助10
14秒前
14秒前
闪闪念文完成签到 ,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
Conductance of concentrated aqueous solutions of electrolytes. I. Strong uni-univalent electrolytes 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5016604
求助须知:如何正确求助?哪些是违规求助? 4256659
关于积分的说明 13265528
捐赠科研通 4060614
什么是DOI,文献DOI怎么找? 2220941
邀请新用户注册赠送积分活动 1230246
关于科研通互助平台的介绍 1152831