When Collaborative Federated Learning Meets Blockchain to Preserve Privacy in Healthcare

计算机科学 符号 医疗保健 服务提供商 人工智能 服务(商务) 机器学习 数学 经济增长 算术 经济 经济
作者
Zakaria Abou El Houda,Abdelhakim Hafid,Lyes Khoukhi,Bouziane Brik
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:10 (5): 2455-2465 被引量:23
标识
DOI:10.1109/tnse.2022.3211192
摘要

Data-driven Machine and Deep Learning (ML/DL) is an emerging approach that uses medical data to build robust and accurate ML/DL models that can improve clinical decisions in some critical tasks ( $e.g.,$ cancer diagnosis). However, ML/DL-based healthcare models still suffer from poor adoption due to the lack of realistic and recent medical data. The privacy nature of these medical datasets makes it difficult for clinicians and healthcare service providers, to share their sensitive data ( $i.e.,$ Patient Health Records (PHR)). Thus, privacy-aware collaboration among clinicians and healthcare service providers is expected to become essential to build robust healthcare applications supported by next-generation networking (NGN) technologies, including Beyond sixth-generation (B6G) networks. In this paper, we design a new framework, called HealthFed, that leverages Federated Learning (FL) and blockchain technologies to enable privacy-preserving and distributed learning among multiple clinician collaborators. Specifically, HealthFed enables several distributed SDN-based domains, clinician collaborators, to securely collaborate in order to build robust healthcare ML-based models, while ensuring the privacy of each clinician participant. In addition, HealthFed ensures a secure aggregation of local model updates by leveraging a secure multiparty computation scheme ( $i.e.,$ Secure Multiparty Computation (SMPC)). Furthermore, we design a novel blockchain-based scheme to facilitate/maintain the collaboration among clinician collaborators, in a fully decentralized, trustworthy, and flexible way. We conduct several experiments to evaluate HealthFed; in-depth experiments results using public Breast Cancer dataset show the efficiency of HealthFed, by not only ensuring the privacy of each collaborator's sensitive data, but also providing an accurate learning models, which makes HealthFed a promising framework for healthcare systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
丫丫完成签到,获得积分10
1秒前
3秒前
3秒前
4秒前
张腾昊完成签到,获得积分10
4秒前
可爱的函函应助无足鸟采纳,获得10
4秒前
Stefani给Stefani的求助进行了留言
4秒前
5秒前
大朱完成签到,获得积分20
5秒前
5秒前
6秒前
VIP发布了新的文献求助10
6秒前
小蜗牛完成签到,获得积分10
6秒前
6秒前
深情安青应助空曲采纳,获得10
7秒前
YUYUYU发布了新的文献求助10
7秒前
华仔应助清爽的碧空采纳,获得10
7秒前
GodMG完成签到,获得积分10
7秒前
成就猫咪发布了新的文献求助10
8秒前
8秒前
奋斗的珍完成签到,获得积分10
9秒前
9秒前
英俊的铭应助jxf采纳,获得10
9秒前
9秒前
9秒前
9秒前
10秒前
轻松冰旋应助科研通管家采纳,获得20
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
天天快乐应助科研通管家采纳,获得10
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
思源应助科研通管家采纳,获得10
10秒前
852应助科研通管家采纳,获得10
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
田乐天发布了新的文献求助20
10秒前
豪哥大大发布了新的文献求助10
12秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147773
求助须知:如何正确求助?哪些是违规求助? 2798855
关于积分的说明 7831859
捐赠科研通 2455728
什么是DOI,文献DOI怎么找? 1306927
科研通“疑难数据库(出版商)”最低求助积分说明 627945
版权声明 601587