When Collaborative Federated Learning Meets Blockchain to Preserve Privacy in Healthcare

计算机科学 符号 医疗保健 服务提供商 人工智能 服务(商务) 机器学习 数学 经济增长 算术 经济 经济
作者
Zakaria Abou El Houda,Abdelhakim Hafid,Lyes Khoukhi,Bouziane Brik
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:10 (5): 2455-2465 被引量:23
标识
DOI:10.1109/tnse.2022.3211192
摘要

Data-driven Machine and Deep Learning (ML/DL) is an emerging approach that uses medical data to build robust and accurate ML/DL models that can improve clinical decisions in some critical tasks ( $e.g.,$ cancer diagnosis). However, ML/DL-based healthcare models still suffer from poor adoption due to the lack of realistic and recent medical data. The privacy nature of these medical datasets makes it difficult for clinicians and healthcare service providers, to share their sensitive data ( $i.e.,$ Patient Health Records (PHR)). Thus, privacy-aware collaboration among clinicians and healthcare service providers is expected to become essential to build robust healthcare applications supported by next-generation networking (NGN) technologies, including Beyond sixth-generation (B6G) networks. In this paper, we design a new framework, called HealthFed, that leverages Federated Learning (FL) and blockchain technologies to enable privacy-preserving and distributed learning among multiple clinician collaborators. Specifically, HealthFed enables several distributed SDN-based domains, clinician collaborators, to securely collaborate in order to build robust healthcare ML-based models, while ensuring the privacy of each clinician participant. In addition, HealthFed ensures a secure aggregation of local model updates by leveraging a secure multiparty computation scheme ( $i.e.,$ Secure Multiparty Computation (SMPC)). Furthermore, we design a novel blockchain-based scheme to facilitate/maintain the collaboration among clinician collaborators, in a fully decentralized, trustworthy, and flexible way. We conduct several experiments to evaluate HealthFed; in-depth experiments results using public Breast Cancer dataset show the efficiency of HealthFed, by not only ensuring the privacy of each collaborator's sensitive data, but also providing an accurate learning models, which makes HealthFed a promising framework for healthcare systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助甜甜圈采纳,获得10
刚刚
huofuman完成签到,获得积分10
1秒前
负责冰烟发布了新的文献求助10
1秒前
htt完成签到,获得积分10
1秒前
feitian201861发布了新的文献求助10
2秒前
2秒前
852应助听话的晓筠采纳,获得10
2秒前
2秒前
Ryan123发布了新的文献求助10
3秒前
dalian完成签到,获得积分10
3秒前
111完成签到,获得积分10
3秒前
青云完成签到,获得积分10
3秒前
CHEN发布了新的文献求助10
3秒前
ning完成签到,获得积分20
4秒前
xiaixax完成签到,获得积分10
4秒前
科研通AI2S应助zz采纳,获得10
4秒前
寒酥完成签到,获得积分10
4秒前
qinswzaiyu完成签到,获得积分10
5秒前
1459完成签到,获得积分10
5秒前
Miranda完成签到,获得积分10
5秒前
充电宝应助欢喜的凡采纳,获得10
6秒前
6秒前
852应助科研小白菜采纳,获得10
6秒前
study666完成签到,获得积分20
6秒前
Wonder完成签到,获得积分10
7秒前
ning发布了新的文献求助20
7秒前
7秒前
liyihua发布了新的文献求助10
7秒前
Lin完成签到 ,获得积分10
8秒前
科研通AI2S应助xinruru采纳,获得10
8秒前
zz完成签到,获得积分10
8秒前
田様应助畅快的紫烟采纳,获得10
9秒前
皖医梁朝伟完成签到 ,获得积分0
9秒前
諵十一完成签到,获得积分10
10秒前
常富育发布了新的文献求助10
10秒前
10秒前
PHDq完成签到,获得积分10
11秒前
图灵桑应助Z17采纳,获得10
11秒前
神勇幻枫完成签到,获得积分10
11秒前
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016449
求助须知:如何正确求助?哪些是违规求助? 3556606
关于积分的说明 11321734
捐赠科研通 3289320
什么是DOI,文献DOI怎么找? 1812434
邀请新用户注册赠送积分活动 887994
科研通“疑难数据库(出版商)”最低求助积分说明 812060