Oriented wide-bandgap perovskites for monolithic silicon-based tandems with over 1000 hours operational stability

带隙 理论(学习稳定性) 光电子学 材料科学 计算机科学 工程物理 物理 机器学习
作者
Yuxin Yao,Biao Li,Degong Ding,Chenxia Kan,Pengjie Hang,Daoyong Zhang,Zechen Hu,Zhenyi Ni,Xuegong Yu,Deren Yang
出处
期刊:Nature Communications [Nature Portfolio]
卷期号:16 (1)
标识
DOI:10.1038/s41467-024-55377-6
摘要

The instability of hybrid wide-bandgap (WBG) perovskite materials (with bandgap larger than 1.68 eV) still stands out as a major constraint for the commercialization of perovskite/silicon tandem photovoltaics, yet its correlation with the facet properties of WBG perovskites has not been revealed. Herein, we combine experiments and theoretical calculations to comprehensively understand the facet-dependent instability of WBG perovskites. We find that the (111) facet, which owned higher ion-migration activation energy and lower diffusion constant, endured instability better than the (100) facet in multi-component 1.68 eV perovskites under electron beam or light irradiations, where excess charge carriers facilitate halide migrations and thereafter phase segregations. By introducing trioctylphosphine oxide into the WBG perovskite, a strong oriented growth of the (111) facet for the WBG perovskite film was realized which exhibited enhanced operational stability against light illumination. The fabricated one square centimeter area perovskite/silicon tandems with n-i-p and p-i-n configurations deliver efficiencies of 28.03 % and 30.78 % (certified 30.26 %), respectively, with both configurations exhibiting excellent operational stability at the maximum power point (MPP) with T95 > 1000 h. The correlation between the instability and facet properties of wide-bandgap perovskites has not been revealed. Here, the authors introduce trioctylphosphine oxide for strong oriented growth of (111) facet in films and achieve certified efficiency of 30.26% for perovskite/silicon tandem solar cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
健忘的金完成签到 ,获得积分10
1秒前
brittany发布了新的文献求助10
2秒前
revive发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
4秒前
潭潭完成签到,获得积分10
4秒前
qiqi1111发布了新的文献求助10
6秒前
7秒前
7秒前
ch发布了新的文献求助10
7秒前
行毅文完成签到,获得积分10
7秒前
zhj发布了新的文献求助10
8秒前
酷波er应助机智的访云采纳,获得10
9秒前
YilinHou应助糖糖采纳,获得10
9秒前
9秒前
关灯完成签到,获得积分10
10秒前
10秒前
muzi发布了新的文献求助10
10秒前
10秒前
北过完成签到,获得积分10
10秒前
11秒前
11秒前
13秒前
韩梅发布了新的文献求助10
15秒前
米缸完成签到,获得积分10
16秒前
大模型应助中央戏精学院采纳,获得10
17秒前
Silole发布了新的文献求助10
17秒前
野性的沉鱼完成签到,获得积分10
17秒前
18秒前
yangyajie发布了新的文献求助10
18秒前
18秒前
Yang发布了新的文献求助10
20秒前
李爱国应助辛羽采纳,获得50
21秒前
CipherSage应助张子珍采纳,获得10
21秒前
迅速思萱完成签到,获得积分10
21秒前
皮咻发布了新的文献求助20
21秒前
动漫大师发布了新的文献求助10
22秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741065
求助须知:如何正确求助?哪些是违规求助? 3283833
关于积分的说明 10037107
捐赠科研通 3000659
什么是DOI,文献DOI怎么找? 1646647
邀请新用户注册赠送积分活动 783804
科研通“疑难数据库(出版商)”最低求助积分说明 750427