电解质
材料科学
复合数
金属锂
锂(药物)
离子
聚合物
薄膜
金属
离子运输机
聚合物电解质
化学工程
固态
纳米技术
离子电导率
电极
复合材料
化学
冶金
有机化学
物理化学
工程类
内分泌学
医学
作者
Chao Wang,Wenxin Li,Dabing Li,Xiaoxue Zhao,Yanan Li,Li Wang,Xiang Qi,Meng Wu,Li‐Zhen Fan
出处
期刊:ACS Nano
[American Chemical Society]
日期:2024-11-07
标识
DOI:10.1021/acsnano.4c11205
摘要
The integrated approach of interfacial engineering and composite electrolytes is crucial for the market application of Li metal batteries (LMBs). A 22 μm thin-film type polymer/Li6.4La3Zr1.4Ta0.6O12 (LLZTO) composite solid-state electrolyte (LPCE) was designed that combines fast ion conduction and stable interfacial evolution, enhancing lithium metal interface stability and cycling performance. The ether-based molecular coordination groups/clusters formed by triethylene glycol dimethyl ether (TGDE) and anions facilitated the movement of Li+ between the polymer chain segments. These specific coordination clusters significantly "constrained" the interaction between anions and Li+, inducing the anions to follow the clusters to the Li metal and preferentially participate in solid electrolyte interface (SEI) derivatization. The inorganic salt-rich gradient SEI modulates Li+ deposition and inhibits uncontrolled dendrite growth, achieving stable cycling of Li symmetric cell at 0.2 mA cm–2 for over 2000 h. Furthermore, the Li||NCM811 cell at a rate of 0.1 C exhibits an initial discharge capacity of 194.5 mAh g–1, maintaining a capacity retention rate of over 90% after 500 cycles. This work demonstrates the importance of domain-limited ion clusters in ion transport and interfacial evolution, providing a perspective for solid-state LMBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI