已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

RSAM-Seg: A SAM-Based Model with Prior Knowledge Integration for Remote Sensing Image Semantic Segmentation

计算机科学 适配器(计算) 分割 遥感 云计算 人工智能 编码器 基本事实 图像分割 领域(数学) 计算机视觉 计算机硬件 数学 纯数学 地质学 操作系统
作者
Jie Zhang,Yunxin Li,Xubing Yang,Rui Jiang,Li Zhang
出处
期刊:Remote Sensing [MDPI AG]
卷期号:17 (4): 590-590
标识
DOI:10.3390/rs17040590
摘要

The development of high-resolution remote sensing satellites has provided great convenience for research work related to remote sensing. Segmentation and extraction of specific targets are essential tasks when facing the vast and complex remote sensing images. Recently, the introduction of Segment Anything Model (SAM) provides a universal pre-training model for image segmentation tasks. While the direct application of SAM to remote sensing image segmentation tasks does not yield satisfactory results, we propose RSAM-Seg, which stands for Remote Sensing SAM with Semantic Segmentation, as a tailored modification of SAM for the remote sensing field and eliminates the need for manual intervention to provide prompts. Adapter-Scale, a set of supplementary scaling modules, are proposed in the multi-head attention blocks of the encoder part of SAM. Furthermore, Adapter-Feature are inserted between the Vision Transformer (ViT) blocks. These modules aim to incorporate high-frequency image information and image embedding features to generate image-informed prompts. Experiments are conducted on four distinct remote sensing scenarios, encompassing cloud detection, field monitoring, building detection and road mapping tasks . The experimental results not only showcase the improvement over the original SAM and U-Net across cloud, buildings, fields and roads scenarios, but also highlight the capacity of RSAM-Seg to discern absent areas within the ground truth of certain datasets, affirming its potential as an auxiliary annotation method. In addition, the performance in few-shot scenarios is commendable, underscores its potential in dealing with limited datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助longtengfei采纳,获得10
刚刚
刚刚
大力南风发布了新的文献求助10
1秒前
纯2025发布了新的文献求助10
1秒前
江河发布了新的文献求助10
1秒前
龚仕杰完成签到 ,获得积分10
3秒前
3秒前
4秒前
无花果应助Hermoine采纳,获得10
4秒前
爆米花应助吴雨涛采纳,获得10
6秒前
Poik完成签到,获得积分10
8秒前
8秒前
goufufu发布了新的文献求助10
10秒前
李健应助Inanopig采纳,获得30
10秒前
10秒前
Daniel发布了新的文献求助10
11秒前
温偏烫完成签到,获得积分10
11秒前
keyanzhang完成签到,获得积分10
12秒前
纯2025完成签到,获得积分10
13秒前
温偏烫发布了新的文献求助10
13秒前
戈惜完成签到 ,获得积分10
14秒前
无语完成签到,获得积分10
15秒前
16秒前
fzr706完成签到,获得积分10
17秒前
18秒前
LHP发布了新的文献求助30
18秒前
有机狗发布了新的文献求助10
19秒前
乐乐应助Daniel采纳,获得10
22秒前
23秒前
Morning发布了新的文献求助10
23秒前
24秒前
24秒前
勇士发布了新的文献求助30
27秒前
白水完成签到,获得积分10
28秒前
28秒前
28秒前
czq发布了新的文献求助10
28秒前
28秒前
aforgemon发布了新的文献求助10
29秒前
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538728
求助须知:如何正确求助?哪些是违规求助? 3116470
关于积分的说明 9325269
捐赠科研通 2814306
什么是DOI,文献DOI怎么找? 1546593
邀请新用户注册赠送积分活动 720623
科研通“疑难数据库(出版商)”最低求助积分说明 712109