An Insulator Defect Detection Model in Aerial Images Based on Multiscale Feature Pyramid Network

计算机科学 绝缘体(电) 电力传输 人工智能 航空影像 特征提取 稳健性(进化) 故障检测与隔离 目标检测 模式识别(心理学) 实时计算 计算机视觉 工程类 电气工程 图像(数学) 执行机构 化学 基因 生物化学
作者
Kun Hao,Guanke Chen,Lu Zhao,Zhisheng Li,Yonglei Liu,Chuanqi Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-12 被引量:59
标识
DOI:10.1109/tim.2022.3200861
摘要

The faults caused by insulator defects will seriously threaten the operational safety of the power grid. Therefore, insulator defect detection play a crucial role in inspecting transmission lines. Compared with traditional methods, the network such as You Only Look Once (YOLO) family based on deep learning have high accuracy and strong robustness in insulator recognition and fault detection. However, the performance of these network are usually affected by the shooting conditions as well as aerial images with diverse types of insulators and complex backgrounds, resulting in poor detection result. In addition, the relatively small insulator fault (bunch-drop) area in aerial images will also make detection difficult. To solve these problems, this paper proposes an improved insulator defect detection model based on YOLOv4 (ID-YOLO). To create our model, we design a new backbone network structure, Cross Stage Partial and Residual Split Attention Network (CSP-ResNeSt), that can solve the interference problem of complex backgrounds in aerial images to enhance the network's feature extraction capability. In addition, we adopt a new multiscale Bidirectional Feature Pyramid Network with Simple Attention Module (Bi-SimAM-FPN), which can address the difficulty of identifying a small scale of insulator defects in an image for more efficient feature fusion. We experimentally demonstrate that the mean average precision (mAP) of the proposed model is 95.63%, which is 3.5% higher than that of the YOLOv4. Most importantly, the detection speed of this model can reach 63 FPS, which meets the requirements of real-time detection of insulator bunch-drop faults.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pzxixixi发布了新的文献求助10
刚刚
刚刚
隐形曼青应助科研牛人采纳,获得10
1秒前
善学以致用应助上官听白采纳,获得40
2秒前
未央歌完成签到 ,获得积分10
2秒前
3秒前
3秒前
Zsir发布了新的文献求助10
3秒前
神勇的晓曼关注了科研通微信公众号
4秒前
高山流水完成签到,获得积分10
4秒前
烟寒发布了新的文献求助10
4秒前
4秒前
5秒前
深情安青应助0168先生采纳,获得10
5秒前
SciGPT应助富婆阳西采纳,获得20
5秒前
Jasper应助方圆几里采纳,获得10
6秒前
AnnaTian发布了新的文献求助10
7秒前
朴素幼晴发布了新的文献求助10
8秒前
8秒前
糯鱼鱼ovo完成签到 ,获得积分10
9秒前
9秒前
Colossus完成签到,获得积分10
9秒前
jianhan完成签到,获得积分10
9秒前
dayueban发布了新的文献求助10
10秒前
10秒前
爱笑紫菜完成签到,获得积分10
10秒前
10秒前
汎影发布了新的文献求助10
11秒前
11秒前
彭于晏应助ZZY采纳,获得10
11秒前
实验好难应助niy6tyg采纳,获得10
12秒前
绝尘发布了新的文献求助20
12秒前
ShellyMaya完成签到 ,获得积分10
13秒前
科研小白完成签到,获得积分10
13秒前
kypri发布了新的文献求助30
13秒前
13秒前
烟寒完成签到,获得积分10
13秒前
科研牛人发布了新的文献求助10
14秒前
fuyuan发布了新的文献求助30
15秒前
朱老二完成签到,获得积分10
15秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735677
求助须知:如何正确求助?哪些是违规求助? 3279465
关于积分的说明 10015528
捐赠科研通 2996202
什么是DOI,文献DOI怎么找? 1643929
邀请新用户注册赠送积分活动 781579
科研通“疑难数据库(出版商)”最低求助积分说明 749423