An Insulator Defect Detection Model in Aerial Images Based on Multiscale Feature Pyramid Network

计算机科学 绝缘体(电) 电力传输 人工智能 航空影像 特征提取 稳健性(进化) 故障检测与隔离 目标检测 模式识别(心理学) 实时计算 计算机视觉 工程类 电气工程 图像(数学) 执行机构 化学 基因 生物化学
作者
Kun Hao,Guanke Chen,Lu Zhao,Zhisheng Li,Yonglei Liu,Chuanqi Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-12 被引量:104
标识
DOI:10.1109/tim.2022.3200861
摘要

The faults caused by insulator defects will seriously threaten the operational safety of the power grid. Therefore, insulator defect detection play a crucial role in inspecting transmission lines. Compared with traditional methods, the network such as You Only Look Once (YOLO) family based on deep learning have high accuracy and strong robustness in insulator recognition and fault detection. However, the performance of these network are usually affected by the shooting conditions as well as aerial images with diverse types of insulators and complex backgrounds, resulting in poor detection result. In addition, the relatively small insulator fault (bunch-drop) area in aerial images will also make detection difficult. To solve these problems, this paper proposes an improved insulator defect detection model based on YOLOv4 (ID-YOLO). To create our model, we design a new backbone network structure, Cross Stage Partial and Residual Split Attention Network (CSP-ResNeSt), that can solve the interference problem of complex backgrounds in aerial images to enhance the network's feature extraction capability. In addition, we adopt a new multiscale Bidirectional Feature Pyramid Network with Simple Attention Module (Bi-SimAM-FPN), which can address the difficulty of identifying a small scale of insulator defects in an image for more efficient feature fusion. We experimentally demonstrate that the mean average precision (mAP) of the proposed model is 95.63%, which is 3.5% higher than that of the YOLOv4. Most importantly, the detection speed of this model can reach 63 FPS, which meets the requirements of real-time detection of insulator bunch-drop faults.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奥美拉唑发布了新的文献求助10
刚刚
板栗发布了新的文献求助20
刚刚
我是老大应助淡淡的航空采纳,获得10
1秒前
1秒前
1秒前
山河统一发布了新的文献求助30
1秒前
2秒前
2秒前
弼马温完成签到 ,获得积分10
2秒前
fcdawn完成签到,获得积分10
2秒前
2秒前
ss发布了新的文献求助30
2秒前
蛙蛙完成签到,获得积分0
3秒前
无可匹敌的饭量完成签到,获得积分10
3秒前
上官若男应助小潘采纳,获得10
3秒前
ding应助hlt采纳,获得10
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
5秒前
前前前世完成签到,获得积分10
5秒前
6秒前
弼马温关注了科研通微信公众号
6秒前
可爱迪发布了新的文献求助10
6秒前
健壮的化蛹应助顺心的骁采纳,获得10
7秒前
小满发布了新的文献求助10
7秒前
ss完成签到 ,获得积分10
7秒前
tt完成签到,获得积分10
8秒前
8秒前
8秒前
fish1998完成签到,获得积分10
8秒前
顾矜应助优雅尔芙采纳,获得10
8秒前
Mr祥发布了新的文献求助10
9秒前
爬不起来发布了新的文献求助10
9秒前
9秒前
10秒前
CCCC完成签到,获得积分20
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776435
求助须知:如何正确求助?哪些是违规求助? 5629479
关于积分的说明 15442901
捐赠科研通 4908608
什么是DOI,文献DOI怎么找? 2641332
邀请新用户注册赠送积分活动 1589287
关于科研通互助平台的介绍 1543910