清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An Insulator Defect Detection Model in Aerial Images Based on Multiscale Feature Pyramid Network

计算机科学 绝缘体(电) 电力传输 人工智能 航空影像 特征提取 稳健性(进化) 故障检测与隔离 目标检测 模式识别(心理学) 实时计算 计算机视觉 工程类 电气工程 图像(数学) 执行机构 化学 基因 生物化学
作者
Kun Hao,Guanke Chen,Lu Zhao,Zhisheng Li,Yonglei Liu,Chuanqi Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-12 被引量:102
标识
DOI:10.1109/tim.2022.3200861
摘要

The faults caused by insulator defects will seriously threaten the operational safety of the power grid. Therefore, insulator defect detection play a crucial role in inspecting transmission lines. Compared with traditional methods, the network such as You Only Look Once (YOLO) family based on deep learning have high accuracy and strong robustness in insulator recognition and fault detection. However, the performance of these network are usually affected by the shooting conditions as well as aerial images with diverse types of insulators and complex backgrounds, resulting in poor detection result. In addition, the relatively small insulator fault (bunch-drop) area in aerial images will also make detection difficult. To solve these problems, this paper proposes an improved insulator defect detection model based on YOLOv4 (ID-YOLO). To create our model, we design a new backbone network structure, Cross Stage Partial and Residual Split Attention Network (CSP-ResNeSt), that can solve the interference problem of complex backgrounds in aerial images to enhance the network's feature extraction capability. In addition, we adopt a new multiscale Bidirectional Feature Pyramid Network with Simple Attention Module (Bi-SimAM-FPN), which can address the difficulty of identifying a small scale of insulator defects in an image for more efficient feature fusion. We experimentally demonstrate that the mean average precision (mAP) of the proposed model is 95.63%, which is 3.5% higher than that of the YOLOv4. Most importantly, the detection speed of this model can reach 63 FPS, which meets the requirements of real-time detection of insulator bunch-drop faults.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乔杰完成签到 ,获得积分10
9秒前
Hello应助ceeray23采纳,获得20
14秒前
地尔硫卓发布了新的文献求助20
16秒前
李志全完成签到 ,获得积分10
55秒前
所所应助ceeray23采纳,获得20
59秒前
杨杨完成签到,获得积分10
1分钟前
1分钟前
叶远望完成签到 ,获得积分10
1分钟前
ceeray23发布了新的文献求助20
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得80
1分钟前
1分钟前
1分钟前
SciGPT应助热情的人杰采纳,获得10
1分钟前
guoguo1119完成签到 ,获得积分10
1分钟前
5433完成签到 ,获得积分10
2分钟前
跳跃的鹏飞完成签到 ,获得积分0
2分钟前
文艺水风完成签到 ,获得积分10
2分钟前
大意的火龙果完成签到 ,获得积分10
2分钟前
wang完成签到,获得积分10
3分钟前
浚稚完成签到 ,获得积分10
3分钟前
3分钟前
ceeray23发布了新的文献求助20
3分钟前
开心每一天完成签到 ,获得积分10
3分钟前
widesky777完成签到 ,获得积分0
4分钟前
谭凯文完成签到 ,获得积分10
4分钟前
ceeray23发布了新的文献求助20
4分钟前
4分钟前
星辰大海应助科研通管家采纳,获得30
5分钟前
香蕉觅云应助科研通管家采纳,获得10
5分钟前
汉堡包应助科研通管家采纳,获得10
5分钟前
无花果应助科研通管家采纳,获得10
5分钟前
FXe发布了新的文献求助10
5分钟前
5分钟前
默默的骁完成签到,获得积分10
5分钟前
ceeray23发布了新的文献求助30
5分钟前
默默的骁发布了新的文献求助10
5分钟前
华仔应助默默的骁采纳,获得10
5分钟前
sting完成签到,获得积分10
6分钟前
6分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584801
求助须知:如何正确求助?哪些是违规求助? 4668686
关于积分的说明 14771581
捐赠科研通 4614599
什么是DOI,文献DOI怎么找? 2530239
邀请新用户注册赠送积分活动 1499103
关于科研通互助平台的介绍 1467551