An Insulator Defect Detection Model in Aerial Images Based on Multiscale Feature Pyramid Network

计算机科学 绝缘体(电) 电力传输 人工智能 航空影像 特征提取 稳健性(进化) 故障检测与隔离 目标检测 模式识别(心理学) 实时计算 计算机视觉 工程类 电气工程 图像(数学) 执行机构 化学 基因 生物化学
作者
Kun Hao,Guanke Chen,Lu Zhao,Zhisheng Li,Yonglei Liu,Chuanqi Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-12 被引量:59
标识
DOI:10.1109/tim.2022.3200861
摘要

The faults caused by insulator defects will seriously threaten the operational safety of the power grid. Therefore, insulator defect detection play a crucial role in inspecting transmission lines. Compared with traditional methods, the network such as You Only Look Once (YOLO) family based on deep learning have high accuracy and strong robustness in insulator recognition and fault detection. However, the performance of these network are usually affected by the shooting conditions as well as aerial images with diverse types of insulators and complex backgrounds, resulting in poor detection result. In addition, the relatively small insulator fault (bunch-drop) area in aerial images will also make detection difficult. To solve these problems, this paper proposes an improved insulator defect detection model based on YOLOv4 (ID-YOLO). To create our model, we design a new backbone network structure, Cross Stage Partial and Residual Split Attention Network (CSP-ResNeSt), that can solve the interference problem of complex backgrounds in aerial images to enhance the network's feature extraction capability. In addition, we adopt a new multiscale Bidirectional Feature Pyramid Network with Simple Attention Module (Bi-SimAM-FPN), which can address the difficulty of identifying a small scale of insulator defects in an image for more efficient feature fusion. We experimentally demonstrate that the mean average precision (mAP) of the proposed model is 95.63%, which is 3.5% higher than that of the YOLOv4. Most importantly, the detection speed of this model can reach 63 FPS, which meets the requirements of real-time detection of insulator bunch-drop faults.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
2秒前
Tangviva1988发布了新的文献求助10
3秒前
DBY完成签到,获得积分10
5秒前
5秒前
搜第一完成签到,获得积分10
8秒前
8秒前
852应助billevans采纳,获得100
11秒前
木木发布了新的文献求助10
12秒前
爆米花应助dcx采纳,获得10
12秒前
Winnie完成签到,获得积分10
13秒前
幸运在我完成签到,获得积分10
13秒前
13秒前
在水一方应助DBY采纳,获得10
14秒前
15秒前
美丽大方的我完成签到,获得积分10
15秒前
123完成签到,获得积分10
16秒前
明亮不乐完成签到,获得积分10
17秒前
田様应助Chunyan_Yu采纳,获得10
17秒前
所所应助花一醒如海采纳,获得10
18秒前
量子星尘发布了新的文献求助10
19秒前
22秒前
26秒前
27秒前
27秒前
zyyym发布了新的文献求助10
28秒前
31秒前
旅行者发布了新的文献求助10
31秒前
开放雪曼发布了新的文献求助10
32秒前
funnyzpc发布了新的文献求助10
33秒前
34秒前
归尘发布了新的文献求助10
34秒前
34秒前
阅遍SCI完成签到,获得积分10
35秒前
褪黑素应助shenzhou9采纳,获得10
37秒前
funnyzpc完成签到,获得积分10
37秒前
充电宝应助从不内卷采纳,获得10
38秒前
bcc发布了新的文献求助10
39秒前
pfuhh发布了新的文献求助10
39秒前
39秒前
40秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979584
求助须知:如何正确求助?哪些是违规求助? 3523532
关于积分的说明 11217894
捐赠科研通 3261031
什么是DOI,文献DOI怎么找? 1800369
邀请新用户注册赠送积分活动 879064
科研通“疑难数据库(出版商)”最低求助积分说明 807152