亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Insulator Defect Detection Model in Aerial Images Based on Multiscale Feature Pyramid Network

计算机科学 绝缘体(电) 电力传输 人工智能 航空影像 特征提取 稳健性(进化) 故障检测与隔离 目标检测 模式识别(心理学) 实时计算 计算机视觉 工程类 电气工程 图像(数学) 执行机构 化学 基因 生物化学
作者
Kun Hao,Guanke Chen,Lu Zhao,Zhisheng Li,Yonglei Liu,Chuanqi Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-12 被引量:63
标识
DOI:10.1109/tim.2022.3200861
摘要

The faults caused by insulator defects will seriously threaten the operational safety of the power grid. Therefore, insulator defect detection play a crucial role in inspecting transmission lines. Compared with traditional methods, the network such as You Only Look Once (YOLO) family based on deep learning have high accuracy and strong robustness in insulator recognition and fault detection. However, the performance of these network are usually affected by the shooting conditions as well as aerial images with diverse types of insulators and complex backgrounds, resulting in poor detection result. In addition, the relatively small insulator fault (bunch-drop) area in aerial images will also make detection difficult. To solve these problems, this paper proposes an improved insulator defect detection model based on YOLOv4 (ID-YOLO). To create our model, we design a new backbone network structure, Cross Stage Partial and Residual Split Attention Network (CSP-ResNeSt), that can solve the interference problem of complex backgrounds in aerial images to enhance the network's feature extraction capability. In addition, we adopt a new multiscale Bidirectional Feature Pyramid Network with Simple Attention Module (Bi-SimAM-FPN), which can address the difficulty of identifying a small scale of insulator defects in an image for more efficient feature fusion. We experimentally demonstrate that the mean average precision (mAP) of the proposed model is 95.63%, which is 3.5% higher than that of the YOLOv4. Most importantly, the detection speed of this model can reach 63 FPS, which meets the requirements of real-time detection of insulator bunch-drop faults.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
捉迷藏完成签到,获得积分0
1秒前
馆长应助科研通管家采纳,获得10
16秒前
迅速的岩完成签到,获得积分10
39秒前
HYQ完成签到 ,获得积分10
1分钟前
1分钟前
嘻嘻完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
ding应助科研通管家采纳,获得10
2分钟前
徐凤年完成签到,获得积分10
2分钟前
沐雨微寒完成签到,获得积分10
2分钟前
3分钟前
3分钟前
欣慰外套完成签到 ,获得积分10
3分钟前
yindi1991完成签到 ,获得积分10
3分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
美满的小蘑菇完成签到 ,获得积分10
5分钟前
5分钟前
乐乐应助科研通管家采纳,获得10
6分钟前
6分钟前
瘦瘦的枫叶完成签到 ,获得积分10
6分钟前
7分钟前
量子星尘发布了新的文献求助10
7分钟前
陀思妥耶夫斯基完成签到 ,获得积分10
7分钟前
张杰列夫完成签到 ,获得积分10
8分钟前
JamesPei应助科研通管家采纳,获得10
8分钟前
馆长应助科研通管家采纳,获得20
8分钟前
馆长应助科研通管家采纳,获得10
8分钟前
馆长应助科研通管家采纳,获得10
8分钟前
花落无声完成签到 ,获得积分10
8分钟前
8分钟前
Lily完成签到,获得积分10
8分钟前
8分钟前
Lily发布了新的文献求助10
9分钟前
9分钟前
量子星尘发布了新的文献求助10
9分钟前
Jim完成签到,获得积分10
9分钟前
10分钟前
Shuo应助科研通管家采纳,获得20
10分钟前
慕青应助科研通管家采纳,获得10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596068
求助须知:如何正确求助?哪些是违规求助? 4008190
关于积分的说明 12408923
捐赠科研通 3687090
什么是DOI,文献DOI怎么找? 2032193
邀请新用户注册赠送积分活动 1065428
科研通“疑难数据库(出版商)”最低求助积分说明 950759