An Insulator Defect Detection Model in Aerial Images Based on Multiscale Feature Pyramid Network

计算机科学 绝缘体(电) 电力传输 人工智能 航空影像 特征提取 稳健性(进化) 故障检测与隔离 目标检测 模式识别(心理学) 实时计算 计算机视觉 工程类 电气工程 图像(数学) 执行机构 化学 基因 生物化学
作者
Kun Hao,Guanke Chen,Lu Zhao,Zhisheng Li,Yonglei Liu,Chuanqi Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-12 被引量:104
标识
DOI:10.1109/tim.2022.3200861
摘要

The faults caused by insulator defects will seriously threaten the operational safety of the power grid. Therefore, insulator defect detection play a crucial role in inspecting transmission lines. Compared with traditional methods, the network such as You Only Look Once (YOLO) family based on deep learning have high accuracy and strong robustness in insulator recognition and fault detection. However, the performance of these network are usually affected by the shooting conditions as well as aerial images with diverse types of insulators and complex backgrounds, resulting in poor detection result. In addition, the relatively small insulator fault (bunch-drop) area in aerial images will also make detection difficult. To solve these problems, this paper proposes an improved insulator defect detection model based on YOLOv4 (ID-YOLO). To create our model, we design a new backbone network structure, Cross Stage Partial and Residual Split Attention Network (CSP-ResNeSt), that can solve the interference problem of complex backgrounds in aerial images to enhance the network's feature extraction capability. In addition, we adopt a new multiscale Bidirectional Feature Pyramid Network with Simple Attention Module (Bi-SimAM-FPN), which can address the difficulty of identifying a small scale of insulator defects in an image for more efficient feature fusion. We experimentally demonstrate that the mean average precision (mAP) of the proposed model is 95.63%, which is 3.5% higher than that of the YOLOv4. Most importantly, the detection speed of this model can reach 63 FPS, which meets the requirements of real-time detection of insulator bunch-drop faults.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助Mt采纳,获得10
1秒前
LUO完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
4秒前
问夏发布了新的文献求助10
4秒前
Zyw完成签到 ,获得积分10
4秒前
5秒前
乌贼完成签到 ,获得积分10
5秒前
陆驳发布了新的文献求助10
5秒前
暖风sunny完成签到,获得积分10
6秒前
高兴的百褶裙完成签到,获得积分10
6秒前
SciGPT应助无wu采纳,获得10
7秒前
萧萧完成签到,获得积分0
7秒前
8秒前
8秒前
9秒前
深情安青应助机智跳跳糖采纳,获得10
9秒前
LCC发布了新的文献求助10
9秒前
hhllhh发布了新的文献求助10
10秒前
10秒前
10秒前
Zyw关注了科研通微信公众号
11秒前
12秒前
微光熠发布了新的文献求助10
12秒前
称心的水蓉完成签到,获得积分10
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
nature榜上发布了新的文献求助10
12秒前
Owen应助人类不宜搞科研采纳,获得10
12秒前
ww完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
于瑜与余发布了新的文献求助10
15秒前
15秒前
元谷雪发布了新的文献求助10
15秒前
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695307
求助须知:如何正确求助?哪些是违规求助? 5101268
关于积分的说明 15215811
捐赠科研通 4851665
什么是DOI,文献DOI怎么找? 2602640
邀请新用户注册赠送积分活动 1554296
关于科研通互助平台的介绍 1512277