Performance analysis of dual ejector-expansion air source heat pump cycle with three-stage evaporation for cold region application

喷油器 性能系数 制冷剂 热泵 热泵与制冷循环 热力循环 热膨胀阀 空气源热泵 蒸发器 制冷 蒸发 材料科学 核工程 热力学 机械工程 热交换器 工程类 物理
作者
Y. P. Lu,Mingxin Yu,Jianlin Yu
出处
期刊:Applied Thermal Engineering [Elsevier]
卷期号:226: 120259-120259 被引量:2
标识
DOI:10.1016/j.applthermaleng.2023.120259
摘要

In the present study, a modified dual ejector-expansion heat pump cycle with three-stage evaporation has been proposed for air source heat pump applications in cold region. This cycle layout could lead to an improvement in cycle performance due to much expansion work recovery and better temperature variation matching between cooled air and refrigerant. The performance analyses of the proposed cycle and ejectors using refrigerant R290 have been conducted at different operating conditions. In addition, the performance characteristics of the cycle are compared to those of the baseline cycles using a conventional expansion device, as well as a single ejector and a single evaporator. Through thermodynamic analyses, it is found that the improvements in the coefficient of performance of the proposed cycle can reach up to 26.1% and 10.5%, respectively, as compared to the basic vapor-compression heat hump cycle and ejector-expansion heat hump cycle. The exergy destruction of the proposed cycle can be reduced by 28.6% and 13.6% than those of the other two basic cycles. In addition, the performance of ejectors under different operating conditions is studied. The pressure lift ratio of the ejector in the new cycle varies from 1.36 to 1.69, which shows 14.3%∼21.6% improvement compared to the basic ejector-expansion heat pump cycle. Overall, this paper confirms the performance advantages of the proposed new heat pump cycle and its potential application in an air-source heat pump system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助苹果萧采纳,获得10
刚刚
徐徐完成签到,获得积分10
刚刚
哈哈哈哈发布了新的文献求助10
1秒前
请叫我风吹麦浪应助yoon采纳,获得10
1秒前
认真的青柠完成签到,获得积分10
1秒前
bbanshan完成签到,获得积分10
1秒前
卫生纸发布了新的文献求助10
1秒前
1秒前
2秒前
奔奔完成签到,获得积分10
2秒前
脑洞疼应助李来仪采纳,获得10
3秒前
3秒前
3秒前
demonox发布了新的文献求助10
3秒前
jbhb发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
5秒前
范月月完成签到 ,获得积分10
6秒前
默默的皮牙子应助Rrr采纳,获得10
6秒前
默默的皮牙子应助Rrr采纳,获得10
6秒前
机智苗完成签到,获得积分10
6秒前
7秒前
小油条完成签到,获得积分10
8秒前
马保国123发布了新的文献求助10
8秒前
wanci应助晨曦采纳,获得10
8秒前
潇洒的翠丝完成签到,获得积分20
8秒前
Frank完成签到,获得积分10
8秒前
子车代芙完成签到,获得积分10
8秒前
陌路发布了新的文献求助10
9秒前
猪猪hero发布了新的文献求助10
10秒前
灵巧荆发布了新的文献求助10
10秒前
无私映秋发布了新的文献求助10
10秒前
思源应助zhui采纳,获得10
10秒前
小黄应助清欢采纳,获得10
10秒前
蕾子完成签到,获得积分20
10秒前
敬老院N号应助科研通管家采纳,获得30
11秒前
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794