Patient specific higher order tensor based approach for the detection and localization of myocardial infarction using 12-lead ECG

人工智能 模式识别(心理学) 支持向量机 计算机科学 张量(固有定义) 铅(地质) QRS波群 数学 心脏病学 医学 地貌学 地质学 纯数学
作者
Chhaviraj Chauhan,Rajesh Kumar Tripathy,Monika Agrawal
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:83: 104701-104701 被引量:7
标识
DOI:10.1016/j.bspc.2023.104701
摘要

Myocardial Infarction (MI) is an emergency condition that requires immediate medical treatment. The rapid and accurate diagnosis of MI using a 12-lead electrocardiogram (ECG) is extremely important in a clinical study to save the patient's life. The manual interpretation of MI using a 12-lead ECG is tedious and time-consuming. Therefore, a patient-specific software-based computer-aided diagnosis framework is helpful to detect and localize MI disease accurately. This paper proposes a patient-specific higher-order tensor-based approach to detect and localize MI automatically using 12-lead ECG recordings. The 12-lead ECG recordings are segmented into 12-lead ECG beats using the multi-lead fusion-based QRS detection algorithm. The fast and adaptive multivariate empirical mode decomposition (FA-MVEMD) based multiscale analysis method decomposes 12-lead ECG beat into a third-order tensor containing the information from the samples, beat, and intrinsic mode functions (IMFs). Furthermore, a fourth-order tensor is formulated by considering beats, samples, lead, and IMFs information of 12-lead ECG recording. The multilinear singular value decomposition (MLSVD) extracts features from the fourth-order tensors and third-order tensors of 12-lead ECG. The K-nearest neighbor (KNN), support vector machine (SVM), and stacked autoencoder-based deep neural network (SAE-DNN) models are used for the detection and localization of MI using fourth-order and third-order tensor domain features. The proposed approach is evaluated using 73 healthy control (HC) and 100 different types of MI-based 12-lead ECG recordings from a public database. The proposed approach has obtained the classification accuracy values of (98.84%, 98.27%, 98.27%) and (86.64%, 83.17%, and 81.98%) using (KNN, SVM, and SAE-DNN) models for MI detection, and localization, respectively using 30-min duration of 12-lead ECG recordings. For MI detection and localization, the suggested approach has obtained accuracy values of 96.53% and 93.32%, respectively, using the 4-s duration of 12-lead ECG recordings. Our approach outperformed existing MI detection and localization methods using 12-lead ECG recordings regarding classification performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
思源应助青菜虫子采纳,获得10
1秒前
Connie发布了新的文献求助10
2秒前
4秒前
FashionBoy应助HTT采纳,获得10
5秒前
Alice完成签到 ,获得积分10
7秒前
刻苦的冬易完成签到,获得积分10
12秒前
12秒前
1111发布了新的文献求助10
14秒前
顾矜应助北北采纳,获得20
14秒前
牛马小刘完成签到 ,获得积分10
16秒前
16秒前
哭泣的若翠完成签到,获得积分10
17秒前
cz完成签到 ,获得积分10
20秒前
21秒前
自由蓉发布了新的文献求助10
21秒前
朱晨旭发布了新的文献求助10
21秒前
Youzi完成签到,获得积分10
22秒前
所所应助科研顺利123采纳,获得10
22秒前
冷笑完成签到,获得积分10
23秒前
梅雨季来信完成签到,获得积分10
24秒前
Jenny完成签到,获得积分10
25秒前
27秒前
zhuxl完成签到,获得积分10
28秒前
laterpan完成签到,获得积分10
28秒前
香蕉觅云应助1111采纳,获得10
29秒前
29秒前
我家的二妮完成签到,获得积分10
30秒前
30秒前
znlion完成签到,获得积分10
35秒前
purejun发布了新的文献求助10
35秒前
35秒前
周翊卓完成签到 ,获得积分20
37秒前
38秒前
绮罗完成签到 ,获得积分10
38秒前
李健的小迷弟应助purejun采纳,获得10
39秒前
41秒前
我是老大应助科研通管家采纳,获得10
41秒前
共享精神应助科研通管家采纳,获得10
41秒前
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5306080
求助须知:如何正确求助?哪些是违规求助? 4451949
关于积分的说明 13853470
捐赠科研通 4339452
什么是DOI,文献DOI怎么找? 2382593
邀请新用户注册赠送积分活动 1377537
关于科研通互助平台的介绍 1345169