Patient specific higher order tensor based approach for the detection and localization of myocardial infarction using 12-lead ECG

人工智能 模式识别(心理学) 支持向量机 计算机科学 张量(固有定义) 铅(地质) QRS波群 数学 心脏病学 医学 地貌学 纯数学 地质学
作者
Chhaviraj Chauhan,Rajesh Kumar Tripathy,Monika Agrawal
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:83: 104701-104701 被引量:7
标识
DOI:10.1016/j.bspc.2023.104701
摘要

Myocardial Infarction (MI) is an emergency condition that requires immediate medical treatment. The rapid and accurate diagnosis of MI using a 12-lead electrocardiogram (ECG) is extremely important in a clinical study to save the patient's life. The manual interpretation of MI using a 12-lead ECG is tedious and time-consuming. Therefore, a patient-specific software-based computer-aided diagnosis framework is helpful to detect and localize MI disease accurately. This paper proposes a patient-specific higher-order tensor-based approach to detect and localize MI automatically using 12-lead ECG recordings. The 12-lead ECG recordings are segmented into 12-lead ECG beats using the multi-lead fusion-based QRS detection algorithm. The fast and adaptive multivariate empirical mode decomposition (FA-MVEMD) based multiscale analysis method decomposes 12-lead ECG beat into a third-order tensor containing the information from the samples, beat, and intrinsic mode functions (IMFs). Furthermore, a fourth-order tensor is formulated by considering beats, samples, lead, and IMFs information of 12-lead ECG recording. The multilinear singular value decomposition (MLSVD) extracts features from the fourth-order tensors and third-order tensors of 12-lead ECG. The K-nearest neighbor (KNN), support vector machine (SVM), and stacked autoencoder-based deep neural network (SAE-DNN) models are used for the detection and localization of MI using fourth-order and third-order tensor domain features. The proposed approach is evaluated using 73 healthy control (HC) and 100 different types of MI-based 12-lead ECG recordings from a public database. The proposed approach has obtained the classification accuracy values of (98.84%, 98.27%, 98.27%) and (86.64%, 83.17%, and 81.98%) using (KNN, SVM, and SAE-DNN) models for MI detection, and localization, respectively using 30-min duration of 12-lead ECG recordings. For MI detection and localization, the suggested approach has obtained accuracy values of 96.53% and 93.32%, respectively, using the 4-s duration of 12-lead ECG recordings. Our approach outperformed existing MI detection and localization methods using 12-lead ECG recordings regarding classification performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SS完成签到,获得积分10
刚刚
刚刚
刚刚
刚刚
Akim应助HHHHHN采纳,获得10
刚刚
一个小菜鸡完成签到,获得积分10
1秒前
Jasper应助calmxp采纳,获得10
1秒前
ShaLi123发布了新的文献求助10
1秒前
孙博发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
咲韶发布了新的文献求助10
1秒前
2秒前
司空豁应助故里采纳,获得10
2秒前
Mat应助超级丝采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
小马甲应助chenfaju采纳,获得10
3秒前
小鲸鱼完成签到,获得积分10
3秒前
橘子完成签到 ,获得积分10
3秒前
Lucas应助Pramdx采纳,获得10
3秒前
3秒前
Wang完成签到,获得积分10
4秒前
LL完成签到,获得积分10
4秒前
箴琪发布了新的文献求助10
4秒前
烟花应助谜迪采纳,获得10
4秒前
kk发布了新的文献求助10
4秒前
英俊的铭应助sherry采纳,获得10
4秒前
4秒前
万能图书馆应助xiaotaiyang采纳,获得10
4秒前
zzholiver完成签到,获得积分20
5秒前
5秒前
123完成签到 ,获得积分10
5秒前
安徽梁朝伟完成签到,获得积分10
5秒前
6秒前
求助蚂蚁发布了新的文献求助10
6秒前
leslie发布了新的文献求助10
6秒前
qql发布了新的文献求助10
7秒前
jiangxiaoyu完成签到 ,获得积分10
7秒前
周小鱼发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4572570
求助须知:如何正确求助?哪些是违规求助? 3993286
关于积分的说明 12361873
捐赠科研通 3666367
什么是DOI,文献DOI怎么找? 2020752
邀请新用户注册赠送积分活动 1054961
科研通“疑难数据库(出版商)”最低求助积分说明 942355