重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Patient specific higher order tensor based approach for the detection and localization of myocardial infarction using 12-lead ECG

人工智能 模式识别(心理学) 支持向量机 计算机科学 张量(固有定义) 铅(地质) QRS波群 数学 心脏病学 医学 地貌学 纯数学 地质学
作者
Chhaviraj Chauhan,Rajesh Kumar Tripathy,Monika Agrawal
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:83: 104701-104701 被引量:7
标识
DOI:10.1016/j.bspc.2023.104701
摘要

Myocardial Infarction (MI) is an emergency condition that requires immediate medical treatment. The rapid and accurate diagnosis of MI using a 12-lead electrocardiogram (ECG) is extremely important in a clinical study to save the patient's life. The manual interpretation of MI using a 12-lead ECG is tedious and time-consuming. Therefore, a patient-specific software-based computer-aided diagnosis framework is helpful to detect and localize MI disease accurately. This paper proposes a patient-specific higher-order tensor-based approach to detect and localize MI automatically using 12-lead ECG recordings. The 12-lead ECG recordings are segmented into 12-lead ECG beats using the multi-lead fusion-based QRS detection algorithm. The fast and adaptive multivariate empirical mode decomposition (FA-MVEMD) based multiscale analysis method decomposes 12-lead ECG beat into a third-order tensor containing the information from the samples, beat, and intrinsic mode functions (IMFs). Furthermore, a fourth-order tensor is formulated by considering beats, samples, lead, and IMFs information of 12-lead ECG recording. The multilinear singular value decomposition (MLSVD) extracts features from the fourth-order tensors and third-order tensors of 12-lead ECG. The K-nearest neighbor (KNN), support vector machine (SVM), and stacked autoencoder-based deep neural network (SAE-DNN) models are used for the detection and localization of MI using fourth-order and third-order tensor domain features. The proposed approach is evaluated using 73 healthy control (HC) and 100 different types of MI-based 12-lead ECG recordings from a public database. The proposed approach has obtained the classification accuracy values of (98.84%, 98.27%, 98.27%) and (86.64%, 83.17%, and 81.98%) using (KNN, SVM, and SAE-DNN) models for MI detection, and localization, respectively using 30-min duration of 12-lead ECG recordings. For MI detection and localization, the suggested approach has obtained accuracy values of 96.53% and 93.32%, respectively, using the 4-s duration of 12-lead ECG recordings. Our approach outperformed existing MI detection and localization methods using 12-lead ECG recordings regarding classification performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
95发布了新的文献求助10
1秒前
无极微光应助闪闪草丛采纳,获得20
1秒前
FashionBoy应助反方向的水豚采纳,获得10
1秒前
1秒前
汉堡包应助平淡的豁采纳,获得10
1秒前
谦让的凝阳完成签到,获得积分10
2秒前
2秒前
4秒前
tetrakis发布了新的文献求助10
4秒前
4秒前
英姑应助YY采纳,获得10
5秒前
让我康康发布了新的文献求助10
5秒前
情怀应助kg5g采纳,获得10
5秒前
5秒前
5秒前
李爱国应助陈宝川采纳,获得10
5秒前
灰色与青完成签到,获得积分10
6秒前
李健应助槐序采纳,获得10
6秒前
6秒前
7秒前
7秒前
7秒前
无极微光应助Devon采纳,获得20
7秒前
酷波er应助须臾采纳,获得10
8秒前
Echo迷发布了新的文献求助10
8秒前
8秒前
WIK发布了新的文献求助20
8秒前
研友_VZG7GZ应助Refuel采纳,获得10
9秒前
光亮若翠完成签到,获得积分10
9秒前
穆穆穆发布了新的文献求助30
9秒前
9秒前
咖啡豆完成签到,获得积分10
10秒前
xshuang发布了新的文献求助10
10秒前
加油加油完成签到,获得积分10
10秒前
王筱宁发布了新的文献求助10
10秒前
洞两发布了新的文献求助10
10秒前
脑洞疼应助苏乘风采纳,获得10
10秒前
11秒前
桐伶完成签到,获得积分10
11秒前
SN关闭了SN文献求助
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466621
求助须知:如何正确求助?哪些是违规求助? 4570468
关于积分的说明 14325556
捐赠科研通 4497017
什么是DOI,文献DOI怎么找? 2463674
邀请新用户注册赠送积分活动 1452626
关于科研通互助平台的介绍 1427590