Patient specific higher order tensor based approach for the detection and localization of myocardial infarction using 12-lead ECG

人工智能 模式识别(心理学) 支持向量机 计算机科学 张量(固有定义) 铅(地质) QRS波群 数学 心脏病学 医学 地貌学 纯数学 地质学
作者
Chhaviraj Chauhan,Rajesh Kumar Tripathy,Monika Agrawal
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:83: 104701-104701 被引量:7
标识
DOI:10.1016/j.bspc.2023.104701
摘要

Myocardial Infarction (MI) is an emergency condition that requires immediate medical treatment. The rapid and accurate diagnosis of MI using a 12-lead electrocardiogram (ECG) is extremely important in a clinical study to save the patient's life. The manual interpretation of MI using a 12-lead ECG is tedious and time-consuming. Therefore, a patient-specific software-based computer-aided diagnosis framework is helpful to detect and localize MI disease accurately. This paper proposes a patient-specific higher-order tensor-based approach to detect and localize MI automatically using 12-lead ECG recordings. The 12-lead ECG recordings are segmented into 12-lead ECG beats using the multi-lead fusion-based QRS detection algorithm. The fast and adaptive multivariate empirical mode decomposition (FA-MVEMD) based multiscale analysis method decomposes 12-lead ECG beat into a third-order tensor containing the information from the samples, beat, and intrinsic mode functions (IMFs). Furthermore, a fourth-order tensor is formulated by considering beats, samples, lead, and IMFs information of 12-lead ECG recording. The multilinear singular value decomposition (MLSVD) extracts features from the fourth-order tensors and third-order tensors of 12-lead ECG. The K-nearest neighbor (KNN), support vector machine (SVM), and stacked autoencoder-based deep neural network (SAE-DNN) models are used for the detection and localization of MI using fourth-order and third-order tensor domain features. The proposed approach is evaluated using 73 healthy control (HC) and 100 different types of MI-based 12-lead ECG recordings from a public database. The proposed approach has obtained the classification accuracy values of (98.84%, 98.27%, 98.27%) and (86.64%, 83.17%, and 81.98%) using (KNN, SVM, and SAE-DNN) models for MI detection, and localization, respectively using 30-min duration of 12-lead ECG recordings. For MI detection and localization, the suggested approach has obtained accuracy values of 96.53% and 93.32%, respectively, using the 4-s duration of 12-lead ECG recordings. Our approach outperformed existing MI detection and localization methods using 12-lead ECG recordings regarding classification performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
在水一方应助kdjm688采纳,获得10
1秒前
刘书章完成签到,获得积分20
1秒前
cj发布了新的文献求助10
2秒前
whatislove发布了新的文献求助10
3秒前
aa完成签到 ,获得积分10
3秒前
MrH完成签到,获得积分10
4秒前
大个应助喝杯水再走采纳,获得10
5秒前
吴学成发布了新的文献求助10
6秒前
6秒前
董鑫完成签到,获得积分10
6秒前
蛙蛙发布了新的文献求助10
7秒前
8秒前
上官若男应助Y_Jfeng采纳,获得10
9秒前
9秒前
麦子完成签到 ,获得积分10
10秒前
corazon发布了新的文献求助30
10秒前
CR完成签到,获得积分10
11秒前
邱名仕完成签到 ,获得积分10
11秒前
12秒前
花开富贵发布了新的文献求助10
13秒前
Lee关闭了Lee文献求助
14秒前
无极微光应助www采纳,获得20
14秒前
alexlpb完成签到,获得积分0
14秒前
江小白发布了新的文献求助10
15秒前
16秒前
英子发布了新的文献求助10
16秒前
鲁迪完成签到,获得积分10
16秒前
大模型应助cj采纳,获得10
18秒前
科研通AI2S应助xcc采纳,获得10
18秒前
19秒前
蓬蓬完成签到,获得积分10
20秒前
曲沉鱼发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
22秒前
corazon发布了新的文献求助30
22秒前
无极微光应助yana采纳,获得20
23秒前
Owen应助江风采纳,获得10
23秒前
25秒前
yy完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680081
求助须知:如何正确求助?哪些是违规求助? 4995956
关于积分的说明 15171678
捐赠科研通 4839887
什么是DOI,文献DOI怎么找? 2593687
邀请新用户注册赠送积分活动 1546696
关于科研通互助平台的介绍 1504768