亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Patient specific higher order tensor based approach for the detection and localization of myocardial infarction using 12-lead ECG

人工智能 模式识别(心理学) 支持向量机 计算机科学 张量(固有定义) 铅(地质) QRS波群 数学 心脏病学 医学 地貌学 地质学 纯数学
作者
Chhaviraj Chauhan,Rajesh Kumar Tripathy,Monika Agrawal
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:83: 104701-104701 被引量:7
标识
DOI:10.1016/j.bspc.2023.104701
摘要

Myocardial Infarction (MI) is an emergency condition that requires immediate medical treatment. The rapid and accurate diagnosis of MI using a 12-lead electrocardiogram (ECG) is extremely important in a clinical study to save the patient's life. The manual interpretation of MI using a 12-lead ECG is tedious and time-consuming. Therefore, a patient-specific software-based computer-aided diagnosis framework is helpful to detect and localize MI disease accurately. This paper proposes a patient-specific higher-order tensor-based approach to detect and localize MI automatically using 12-lead ECG recordings. The 12-lead ECG recordings are segmented into 12-lead ECG beats using the multi-lead fusion-based QRS detection algorithm. The fast and adaptive multivariate empirical mode decomposition (FA-MVEMD) based multiscale analysis method decomposes 12-lead ECG beat into a third-order tensor containing the information from the samples, beat, and intrinsic mode functions (IMFs). Furthermore, a fourth-order tensor is formulated by considering beats, samples, lead, and IMFs information of 12-lead ECG recording. The multilinear singular value decomposition (MLSVD) extracts features from the fourth-order tensors and third-order tensors of 12-lead ECG. The K-nearest neighbor (KNN), support vector machine (SVM), and stacked autoencoder-based deep neural network (SAE-DNN) models are used for the detection and localization of MI using fourth-order and third-order tensor domain features. The proposed approach is evaluated using 73 healthy control (HC) and 100 different types of MI-based 12-lead ECG recordings from a public database. The proposed approach has obtained the classification accuracy values of (98.84%, 98.27%, 98.27%) and (86.64%, 83.17%, and 81.98%) using (KNN, SVM, and SAE-DNN) models for MI detection, and localization, respectively using 30-min duration of 12-lead ECG recordings. For MI detection and localization, the suggested approach has obtained accuracy values of 96.53% and 93.32%, respectively, using the 4-s duration of 12-lead ECG recordings. Our approach outperformed existing MI detection and localization methods using 12-lead ECG recordings regarding classification performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Levent完成签到 ,获得积分10
1秒前
CipherSage应助wangyue采纳,获得10
9秒前
10秒前
10秒前
13秒前
14秒前
天大青年发布了新的文献求助10
20秒前
23秒前
清爽夜雪完成签到,获得积分10
25秒前
充电宝应助天大青年采纳,获得10
31秒前
Petrichor完成签到 ,获得积分10
34秒前
33发布了新的文献求助30
47秒前
CipherSage应助科研通管家采纳,获得10
52秒前
52秒前
月军完成签到,获得积分10
54秒前
沃兹姬完成签到 ,获得积分10
54秒前
葛觅荷完成签到,获得积分10
57秒前
桐桐应助33采纳,获得10
1分钟前
nana2hao完成签到,获得积分10
1分钟前
研友_ZAxX6n完成签到 ,获得积分10
1分钟前
1分钟前
赘婿应助生动的宛亦采纳,获得10
1分钟前
搜集达人应助雪中采纳,获得10
1分钟前
1分钟前
我就是来找文献的完成签到,获得积分10
1分钟前
李健应助坚定岂愈采纳,获得10
2分钟前
2分钟前
zzyh307完成签到 ,获得积分0
2分钟前
锋芒不毕露完成签到,获得积分10
2分钟前
2分钟前
DIDIDI完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
战红缨发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150492
求助须知:如何正确求助?哪些是违规求助? 2801881
关于积分的说明 7845881
捐赠科研通 2459245
什么是DOI,文献DOI怎么找? 1309130
科研通“疑难数据库(出版商)”最低求助积分说明 628656
版权声明 601727