已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Patient specific higher order tensor based approach for the detection and localization of myocardial infarction using 12-lead ECG

人工智能 模式识别(心理学) 支持向量机 计算机科学 张量(固有定义) 铅(地质) QRS波群 数学 心脏病学 医学 地貌学 纯数学 地质学
作者
Chhaviraj Chauhan,Rajesh Kumar Tripathy,Monika Agrawal
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:83: 104701-104701 被引量:7
标识
DOI:10.1016/j.bspc.2023.104701
摘要

Myocardial Infarction (MI) is an emergency condition that requires immediate medical treatment. The rapid and accurate diagnosis of MI using a 12-lead electrocardiogram (ECG) is extremely important in a clinical study to save the patient's life. The manual interpretation of MI using a 12-lead ECG is tedious and time-consuming. Therefore, a patient-specific software-based computer-aided diagnosis framework is helpful to detect and localize MI disease accurately. This paper proposes a patient-specific higher-order tensor-based approach to detect and localize MI automatically using 12-lead ECG recordings. The 12-lead ECG recordings are segmented into 12-lead ECG beats using the multi-lead fusion-based QRS detection algorithm. The fast and adaptive multivariate empirical mode decomposition (FA-MVEMD) based multiscale analysis method decomposes 12-lead ECG beat into a third-order tensor containing the information from the samples, beat, and intrinsic mode functions (IMFs). Furthermore, a fourth-order tensor is formulated by considering beats, samples, lead, and IMFs information of 12-lead ECG recording. The multilinear singular value decomposition (MLSVD) extracts features from the fourth-order tensors and third-order tensors of 12-lead ECG. The K-nearest neighbor (KNN), support vector machine (SVM), and stacked autoencoder-based deep neural network (SAE-DNN) models are used for the detection and localization of MI using fourth-order and third-order tensor domain features. The proposed approach is evaluated using 73 healthy control (HC) and 100 different types of MI-based 12-lead ECG recordings from a public database. The proposed approach has obtained the classification accuracy values of (98.84%, 98.27%, 98.27%) and (86.64%, 83.17%, and 81.98%) using (KNN, SVM, and SAE-DNN) models for MI detection, and localization, respectively using 30-min duration of 12-lead ECG recordings. For MI detection and localization, the suggested approach has obtained accuracy values of 96.53% and 93.32%, respectively, using the 4-s duration of 12-lead ECG recordings. Our approach outperformed existing MI detection and localization methods using 12-lead ECG recordings regarding classification performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuyu发布了新的文献求助10
刚刚
lige完成签到 ,获得积分10
刚刚
2秒前
奋斗的绝悟完成签到,获得积分10
2秒前
JamesPei应助洁净磬采纳,获得10
3秒前
3秒前
含蓄的静竹完成签到,获得积分10
4秒前
4秒前
111完成签到,获得积分10
4秒前
Dr.c完成签到,获得积分10
6秒前
宁过儿发布了新的文献求助20
7秒前
天天快乐应助卧待春雷采纳,获得10
8秒前
研友_GZbO18发布了新的文献求助10
10秒前
10秒前
FLY完成签到,获得积分10
11秒前
车哥爱学习完成签到,获得积分10
15秒前
起风了完成签到 ,获得积分10
15秒前
17秒前
Candy发布了新的文献求助10
19秒前
悦耳忆曼完成签到,获得积分10
21秒前
Ava应助yuyu采纳,获得10
22秒前
22秒前
伏狼壹号完成签到,获得积分10
24秒前
飞天小女警完成签到,获得积分20
24秒前
啊哈完成签到 ,获得积分10
25秒前
WUHUIWEN发布了新的文献求助10
25秒前
鳗鱼如松发布了新的文献求助10
28秒前
短巷完成签到 ,获得积分0
28秒前
Guts关注了科研通微信公众号
33秒前
完美天蓝完成签到 ,获得积分10
34秒前
科研薯条完成签到,获得积分10
35秒前
风笛完成签到 ,获得积分10
36秒前
36秒前
香蕉觅云应助阵雨采纳,获得10
38秒前
Komorebi完成签到 ,获得积分10
38秒前
甜甜冰巧发布了新的文献求助10
38秒前
ding应助科研薯条采纳,获得10
39秒前
雨泽发布了新的文献求助10
39秒前
lina完成签到 ,获得积分10
40秒前
香蕉觅云应助卢雨生采纳,获得10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754502
求助须知:如何正确求助?哪些是违规求助? 5487138
关于积分的说明 15380163
捐赠科研通 4893049
什么是DOI,文献DOI怎么找? 2631710
邀请新用户注册赠送积分活动 1579665
关于科研通互助平台的介绍 1535387