Patient specific higher order tensor based approach for the detection and localization of myocardial infarction using 12-lead ECG

人工智能 模式识别(心理学) 支持向量机 计算机科学 张量(固有定义) 铅(地质) QRS波群 数学 心脏病学 医学 地貌学 纯数学 地质学
作者
Chhaviraj Chauhan,Rajesh Kumar Tripathy,Monika Agrawal
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:83: 104701-104701 被引量:7
标识
DOI:10.1016/j.bspc.2023.104701
摘要

Myocardial Infarction (MI) is an emergency condition that requires immediate medical treatment. The rapid and accurate diagnosis of MI using a 12-lead electrocardiogram (ECG) is extremely important in a clinical study to save the patient's life. The manual interpretation of MI using a 12-lead ECG is tedious and time-consuming. Therefore, a patient-specific software-based computer-aided diagnosis framework is helpful to detect and localize MI disease accurately. This paper proposes a patient-specific higher-order tensor-based approach to detect and localize MI automatically using 12-lead ECG recordings. The 12-lead ECG recordings are segmented into 12-lead ECG beats using the multi-lead fusion-based QRS detection algorithm. The fast and adaptive multivariate empirical mode decomposition (FA-MVEMD) based multiscale analysis method decomposes 12-lead ECG beat into a third-order tensor containing the information from the samples, beat, and intrinsic mode functions (IMFs). Furthermore, a fourth-order tensor is formulated by considering beats, samples, lead, and IMFs information of 12-lead ECG recording. The multilinear singular value decomposition (MLSVD) extracts features from the fourth-order tensors and third-order tensors of 12-lead ECG. The K-nearest neighbor (KNN), support vector machine (SVM), and stacked autoencoder-based deep neural network (SAE-DNN) models are used for the detection and localization of MI using fourth-order and third-order tensor domain features. The proposed approach is evaluated using 73 healthy control (HC) and 100 different types of MI-based 12-lead ECG recordings from a public database. The proposed approach has obtained the classification accuracy values of (98.84%, 98.27%, 98.27%) and (86.64%, 83.17%, and 81.98%) using (KNN, SVM, and SAE-DNN) models for MI detection, and localization, respectively using 30-min duration of 12-lead ECG recordings. For MI detection and localization, the suggested approach has obtained accuracy values of 96.53% and 93.32%, respectively, using the 4-s duration of 12-lead ECG recordings. Our approach outperformed existing MI detection and localization methods using 12-lead ECG recordings regarding classification performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
日出发布了新的文献求助10
刚刚
2秒前
陈陈发布了新的文献求助10
4秒前
嘿嘿应助北北采纳,获得30
4秒前
Twonej给1111的求助进行了留言
4秒前
5秒前
英俊的铭应助111采纳,获得10
7秒前
Victor完成签到 ,获得积分10
9秒前
joxes发布了新的文献求助10
10秒前
10秒前
Simon_chat完成签到,获得积分10
12秒前
传奇3应助BK采纳,获得10
12秒前
锵锵锵应助安静初瑶采纳,获得10
13秒前
我是老大应助Lusteri采纳,获得10
13秒前
15秒前
16秒前
浮游应助djbj2022采纳,获得10
17秒前
21秒前
优秀笑柳完成签到,获得积分10
21秒前
丘比特应助trussie采纳,获得10
21秒前
Cherish完成签到,获得积分10
22秒前
111完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
22秒前
Owen应助马上飞上宇宙采纳,获得10
23秒前
善学以致用应助jc采纳,获得10
23秒前
25秒前
划分完成签到,获得积分10
25秒前
111发布了新的文献求助10
26秒前
fanfan完成签到,获得积分10
27秒前
周久完成签到 ,获得积分10
27秒前
ada发布了新的文献求助10
28秒前
小蘑菇应助小卢卢快闭嘴采纳,获得10
29秒前
彭tiantian完成签到 ,获得积分10
29秒前
31秒前
lucy发布了新的文献求助10
31秒前
33秒前
爱放屁的马邦德完成签到,获得积分10
33秒前
simdows发布了新的文献求助10
34秒前
Rain完成签到,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638000
求助须知:如何正确求助?哪些是违规求助? 4744481
关于积分的说明 15000910
捐赠科研通 4796182
什么是DOI,文献DOI怎么找? 2562369
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481741