A Novel Multi-platform Spatiotempoal Data Fusion Approach for Remote Sensing Imagery Based on Parameter Selection

遥感 计算机科学 传感器融合 选择(遗传算法) 图像融合 融合 合成孔径雷达 人工智能 数据挖掘 地质学 图像(数学) 语言学 哲学
作者
Yunfei Li,Jiali Li,Liangli Meng,Zhenjie Liu,Qian Shi,Jun Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-13
标识
DOI:10.1109/tgrs.2024.3400999
摘要

Spatiotemporal fusion is an important means to reconstruct the medium spatial resolution remote sensing image series. Presently, many spatiotemporal fusion approaches have been developed and adopted in researches on agriculture, ecology, environment, and so on. Although these approaches have achieved remarkable performance in experiments and applications, most of them are designed to fuse all involved bands using the same model with the same parameters, which ignores the band difference. The ignorance may limit the fusion quality for some bands. To address this problem, we propose a novel spatiotemporal data fusion approach based on parameter selection (PSDFA) in this paper. The core idea of the newly proposed PSDFA is producing the synthetic image pairs using available data via three means firstly, then selecting the similar image pair for each band to provide the parameters that are needed for their fusion. The PSDFA can not only be applied in local computers, its simplified version can also be implemented in Google Earth Engine (GEE), which is a powerful and widely used cloud platform for remote sensing data computing. To test the PSDFA, we conduct two experiments, one in local computers and another in GEE. In local computers, the PSDFA is compared with five state-of-the-art fusion methods on two public Landsat-MODIS datasets. In GEE, it is used to produce the monthly 30m image series in two study sites in the USA and compared with another GEE-based fusion approach. The experimental results demonstrate the outstanding performance of the proposed PSDFA in both local computers and GEE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我的miemie发布了新的文献求助20
刚刚
刚刚
刚刚
刚刚
1秒前
1秒前
1秒前
曹沛岚发布了新的文献求助10
2秒前
XXX发布了新的文献求助10
3秒前
念yft发布了新的文献求助10
3秒前
4秒前
ding应助萌神采纳,获得10
4秒前
打打应助苏钰采纳,获得10
4秒前
李健应助33333采纳,获得10
5秒前
情怀应助山月采纳,获得30
5秒前
超级白昼发布了新的文献求助10
5秒前
5秒前
脑洞疼应助程序员采纳,获得10
5秒前
清爽灰狼发布了新的文献求助10
6秒前
tesla发布了新的文献求助10
6秒前
7秒前
萧水白发布了新的文献求助100
7秒前
8秒前
li发布了新的文献求助10
9秒前
10秒前
牙瓜完成签到 ,获得积分10
10秒前
陈博士完成签到,获得积分10
11秒前
12秒前
易小名完成签到 ,获得积分10
12秒前
13秒前
言悦完成签到,获得积分10
14秒前
xxx完成签到,获得积分20
14秒前
wang发布了新的文献求助10
15秒前
FreeRice发布了新的文献求助10
16秒前
科研小垃圾完成签到,获得积分10
17秒前
wild发布了新的文献求助10
18秒前
20秒前
楠易完成签到,获得积分10
21秒前
学术小白完成签到,获得积分10
22秒前
22秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148173
求助须知:如何正确求助?哪些是违规求助? 2799264
关于积分的说明 7834331
捐赠科研通 2456531
什么是DOI,文献DOI怎么找? 1307282
科研通“疑难数据库(出版商)”最低求助积分说明 628124
版权声明 601655