表观遗传学
肿瘤微环境
癌症研究
EZH2型
免疫检查点
三阴性乳腺癌
免疫疗法
生物
DNA甲基化
免疫系统
癌症
组蛋白
乳腺癌
表观遗传疗法
免疫学
基因表达
遗传学
基因
标识
DOI:10.1016/j.phrs.2024.107205
摘要
Triple-negative breast cancer (TNBC) is an aggressive subtype lacking estrogen receptors, progesterone receptors and lacks HER2 overexpression. This absence of critical molecular targets poses significant challenges for conventional therapies. Immunotherapy, remarkably immune checkpoint blockade, offers promise for TNBC treatment, but its efficacy remains limited. Epigenetic dysregulation, including altered DNA methylation, histone modifications, and imbalances in regulators such as BET proteins, plays a crucial role in TNBC development and resistance to treatment. Hypermethylation of tumor suppressor gene promoters and the imbalance of histone methyltransferases such as EZH2 and histone deacetylases (HDACs) profoundly influence tumor cell proliferation, survival, and metastasis. In addition, epigenetic alterations critically shape the tumor microenvironment (TME), including immune cell composition, cytokine signaling, and immune checkpoint expression, ultimately contributing to immune evasion. Targeting these epigenetic mechanisms with specific inhibitors such as EZH2 and HDAC inhibitors in combination with immunotherapy represents a compelling strategy to remodel the TME, potentially overcoming immune evasion and enhancing therapeutic outcomes in TNBC. This review aims to comprehensively elucidate the current understanding of epigenetic modulation in TNBC, its influence on the TME, and the potential of combining epigenetic therapies with immunotherapy to overcome the challenges posed by this aggressive breast cancer subtype.
科研通智能强力驱动
Strongly Powered by AbleSci AI