FFParam-v2.0: A Comprehensive Tool for CHARMM Additive and Drude Polarizable Force-Field Parameter Optimization and Validation

力场(虚构) 极化率 Python(编程语言) 计算机科学 分子 统计物理学 材料科学 物理 量子力学 人工智能 操作系统
作者
Anmol Kumar,Alexander D. MacKerell
出处
期刊:Journal of Physical Chemistry B [American Chemical Society]
卷期号:128 (18): 4385-4395 被引量:1
标识
DOI:10.1021/acs.jpcb.4c01314
摘要

Developing production quality CHARMM force-field (FF) parameters is a very detailed process involving a variety of calculations, many of which are specific for the molecule of interest. The first version of FFParam was developed as a standalone Python package designed for the optimization of electrostatic and bonded parameters of the CHARMM additive and polarizable Drude FFs by using quantum mechanical (QM) target data. The new version of FFParam has multiple new capabilities for FF parameter optimization and validation, with an emphasis on the ability to use condensed-phase target data in optimization. FFParam-v2 allows optimization of Lennard-Jones (LJ) parameters using potential energy scans of interactions between selected atoms in a molecule and noble gases, viz., He and Ne, and through condensed-phase calculations, from which experimental observables such as heats of vaporization and free energies of solvation may be obtained. This functionality serves as a gold standard for both optimizing parameters and validating the performance of the final parameters. A new bonded parameter optimization algorithm has been introduced to account for simultaneously optimizing multiple molecules sharing parameters. FFParam-v2 also supports the comparison of normal modes and the potential energy distribution of internal coordinates towards each normal mode obtained from QM and molecular mechanics calculations. Such comparison capability is vital to validate the balance among various bonded parameters that contribute to the complex normal modes of molecules. User interaction has been extended beyond the original graphical user interface to include command-line interface capabilities that allow for integration of FFParam in workflows, thereby facilitating the automation of parameter optimization. With these new functionalities, FFParam is a more comprehensive parameter optimization tool for both beginners and advanced users.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到,获得积分20
刚刚
Abby应助扣我头上采纳,获得10
刚刚
3秒前
1111发布了新的文献求助10
4秒前
oookkay完成签到,获得积分10
4秒前
6秒前
科研通AI5应助小绳子儿采纳,获得10
7秒前
慧子完成签到,获得积分0
7秒前
SYLH应助江河不可停采纳,获得10
7秒前
8秒前
温婉的逊关注了科研通微信公众号
8秒前
jjjj发布了新的文献求助10
10秒前
11秒前
11秒前
321完成签到,获得积分10
11秒前
逃亡的小狗完成签到,获得积分10
13秒前
13秒前
13秒前
田様应助K513693050采纳,获得10
15秒前
sayso发布了新的文献求助10
15秒前
alan完成签到 ,获得积分10
17秒前
小黄doge发布了新的文献求助10
17秒前
婷婷发布了新的文献求助30
18秒前
Struggle完成签到 ,获得积分10
18秒前
18秒前
oookkay发布了新的文献求助20
18秒前
19秒前
脑洞疼应助奶茶不加珍珠采纳,获得10
19秒前
19秒前
19秒前
1111完成签到,获得积分10
19秒前
啊哦呃完成签到 ,获得积分10
20秒前
21秒前
科研通AI5应助鄢廷芮采纳,获得10
21秒前
zhuzhu完成签到,获得积分20
21秒前
bkagyin应助laoxiaozi采纳,获得10
22秒前
潇洒忘幽完成签到 ,获得积分10
23秒前
向往发布了新的文献求助10
23秒前
guoguo82完成签到,获得积分10
23秒前
24秒前
高分求助中
Genetics: From Genes to Genomes 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3475840
求助须知:如何正确求助?哪些是违规求助? 3067547
关于积分的说明 9104650
捐赠科研通 2759116
什么是DOI,文献DOI怎么找? 1513963
邀请新用户注册赠送积分活动 699928
科研通“疑难数据库(出版商)”最低求助积分说明 699204