辣根过氧化物酶
化学
重组DNA
大肠杆菌
生物化学
细菌
生物催化
融合蛋白
组合化学
产量(工程)
酶
生物
催化作用
基因
离子液体
遗传学
材料科学
冶金
作者
Seungnyeong Heo,Jonghwi Baek,Jinsoo Bae,Bo Am Seo,Seong-Jun Kim,Subin Jeong,Suhyun Kim,Yiseul Ryu,Joong-Jae Lee
标识
DOI:10.1002/cbic.202200700
摘要
Abstract Horseradish peroxidase (HRP) is a pivotal biocatalyst for biosensor development and fine chemical synthesis. HRP proteins are mostly extracted and purified from the roots of horseradish because the solubility and productivity of recombinant HRP in bacteria are significantly low. In this study, we investigate the reconstitution system of split HRP fragments to improve its soluble expression levels in E. coli allowing the cost‐effective production of bioactive HRPs. To promote the effective association between two HRP fragments (HRPn and HRPc), we exploit SpyTag‐SpyCatcher chemistry, a versatile protein coupling method with high affinity and selectivity. Each HRP fragment was genetically fused with SpyTag and SpyCatcher, respectively, exhibiting soluble expression in the E. coli cytoplasm. The engineered split HRPs were effectively and irreversibly reconstituted into a biologically active and stable assembly that can catalyze intrinsic enzymatic reactions. Compared to the chaperone co‐expression system, our approach shows that the production yield of soluble HRP is comparable, but the purity of the final product is relatively high. Therefore, our results can be applied to the high‐yield production of recombinant HRP variants and other difficult‐to‐express proteins in bacteria without complex downstream processes.
科研通智能强力驱动
Strongly Powered by AbleSci AI