Controllable growth of spiral ganglion neurons by magnetic colloidal nanochains

神经突 再生(生物学) 螺旋神经节 神经科学 材料科学 纳米技术 生物 细胞生物学 体外 内耳 生物化学
作者
Lin Xia,Xiaolong Zhao,Xiangyu Ma,Yangnan Hu,Yuan Zhang,Siyu Li,Jie Wang,Yuanjin Zhao,Renjie Chai
出处
期刊:Nano Today [Elsevier]
卷期号:44: 101507-101507 被引量:11
标识
DOI:10.1016/j.nantod.2022.101507
摘要

Nerve regeneration based on neural stem cell therapy has become a promising cure for neurological disorders in recent decades. Various kinds of biomaterials have been developed to guide the oriented growth of newborn neurites, which is the fundamental factor to the synaptic connection of newly differentiated neurons with the desired partners during the regeneration. However, the applied biomaterials are usually incapable of guidance with multiple directions, besides, the underlying guiding mechanism has yet to be clearly stated. In this paper, a novel guiding approach based on the magnetic colloidal nanochains was designed for the oriented growth of newborn neurites. The magnetic colloidal nanochains with aligned topography were fabricated from the self-assembly of the magnetic colloidal nanoparticles under the magnetic field. Well orientation of the newborn neurites from the seeded spiral ganglion neurons (SGNs) was found along the nanochains, which induced the alignment of the seeded SGNs. In addition, the growth cone development and synapse formation of the seeded SGNs was promoted under the guidance of the nanochains, which possessed important significance in the rearrangement of nerve network and recovery of neural signal communication during the regeneration. Importantly, the multidirectional nanochains could be constructed by regulating the magnetic field, which contributed to the oriented guidance of SGNs alignment with multiple directions. This feature facilitated to the complex regenerate environment of the nervous system in vitro. Furthermore, the underlying guiding mechanism was revealed by the transcriptome analysis, which showed well consistent with the "contact guidance" of the nanochains. Thus, it was demonstrated that the magnetic colloidal nanochains possessed huge value in biomedical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
仇道罡发布了新的文献求助10
2秒前
小小发布了新的文献求助10
2秒前
竹心蜓发布了新的文献求助50
2秒前
跳跃雯发布了新的文献求助10
3秒前
阳炎发布了新的文献求助10
3秒前
四倍半辣椒关注了科研通微信公众号
3秒前
整齐的一手完成签到,获得积分10
4秒前
科研通AI2S应助昵称采纳,获得10
4秒前
Mineme发布了新的文献求助10
4秒前
5秒前
Lu发布了新的文献求助10
5秒前
万能图书馆应助刻苦的荆采纳,获得10
5秒前
打打应助anlikek采纳,获得10
6秒前
6秒前
热心如彤完成签到,获得积分10
6秒前
感动冰姬完成签到,获得积分10
7秒前
魏冉2完成签到,获得积分20
7秒前
所所应助红雪0801采纳,获得10
7秒前
桐桐应助汉莎ui采纳,获得10
7秒前
李爱国应助机智的凡梦采纳,获得10
8秒前
烟花应助科研工头采纳,获得10
9秒前
DrZ发布了新的文献求助10
9秒前
老头有低保完成签到,获得积分10
10秒前
蜗牛完成签到,获得积分20
10秒前
山手发布了新的文献求助10
11秒前
11秒前
Microgan完成签到,获得积分10
11秒前
Ao应助Muxi采纳,获得10
11秒前
12秒前
Lcc完成签到,获得积分10
12秒前
知止完成签到,获得积分10
12秒前
追寻荔枝发布了新的文献求助10
13秒前
乐乐应助cy采纳,获得10
13秒前
14秒前
Mr.egg完成签到,获得积分10
14秒前
14秒前
xyy给xyy的求助进行了留言
14秒前
小马甲应助懒懒洋洋洋采纳,获得10
14秒前
呢喃发布了新的文献求助20
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
金属中的晶界偏聚 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3296818
求助须知:如何正确求助?哪些是违规求助? 2932518
关于积分的说明 8457314
捐赠科研通 2605021
什么是DOI,文献DOI怎么找? 1422147
科研通“疑难数据库(出版商)”最低求助积分说明 661308
邀请新用户注册赠送积分活动 644397