亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The normative modeling framework for computational psychiatry

规范性 亚型 计算机科学 计算模型 人口 决策规范模型 人工智能 协议(科学) 认知科学 数据科学 关系(数据库) 机器学习 过程(计算) 心理学 医学 数据挖掘 认识论 病理 操作系统 哲学 环境卫生 程序设计语言 替代医学
作者
Saige Rutherford,Seyed Mostafa Kia,Thomas Wolfers,Charlotte Fraza,Mariam Zabihi,Richard Dinga,Pierre Berthet,Amanda Worker,Serena Verdi,Henricus G. Ruhé,Christian F. Beckmann,André F. Marquand
出处
期刊:Nature Protocols [Springer Nature]
卷期号:17 (7): 1711-1734 被引量:211
标识
DOI:10.1038/s41596-022-00696-5
摘要

Normative modeling is an emerging and innovative framework for mapping individual differences at the level of a single subject or observation in relation to a reference model. It involves charting centiles of variation across a population in terms of mappings between biology and behavior, which can then be used to make statistical inferences at the level of the individual. The fields of computational psychiatry and clinical neuroscience have been slow to transition away from patient versus ‘healthy’ control analytic approaches, probably owing to a lack of tools designed to properly model biological heterogeneity of mental disorders. Normative modeling provides a solution to address this issue and moves analysis away from case–control comparisons that rely on potentially noisy clinical labels. Here we define a standardized protocol to guide users through, from start to finish, normative modeling analysis using the Predictive Clinical Neuroscience toolkit (PCNtoolkit). We describe the input data selection process, provide intuition behind the various modeling choices and conclude by demonstrating several examples of downstream analyses that the normative model may facilitate, such as stratification of high-risk individuals, subtyping and behavioral predictive modeling. The protocol takes ~1–3 h to complete. This protocol guides the user through normative modeling analysis using the Predictive Clinical Neuroscience toolkit (PCNtoolkit), enabling individual differences to be mapped at the level of a single subject or observation in relation to a reference model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
夏侯德东完成签到,获得积分10
8秒前
12秒前
彭于晏应助橙汁儿采纳,获得10
13秒前
Aliothae发布了新的文献求助10
14秒前
商毛毛发布了新的文献求助10
17秒前
橙汁儿完成签到,获得积分10
20秒前
邓佳鑫Alan应助Aliothae采纳,获得10
23秒前
Aliothae完成签到,获得积分10
39秒前
看不了一点文献应助夏宇采纳,获得20
41秒前
无花果应助美满惜寒采纳,获得10
43秒前
邢晓彤完成签到 ,获得积分10
46秒前
整齐的飞兰完成签到 ,获得积分10
47秒前
52秒前
美满惜寒发布了新的文献求助10
55秒前
59秒前
研友_VZG7GZ应助VvV采纳,获得10
59秒前
大模型应助美满惜寒采纳,获得10
1分钟前
solar发布了新的文献求助10
1分钟前
1分钟前
儒雅的十八完成签到,获得积分10
1分钟前
雪白元风完成签到 ,获得积分10
1分钟前
LHH完成签到 ,获得积分10
1分钟前
1分钟前
仁爱裘完成签到,获得积分10
1分钟前
美满惜寒发布了新的文献求助10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
andrele应助科研通管家采纳,获得10
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
1分钟前
科研兵发布了新的文献求助20
1分钟前
1分钟前
2分钟前
solar完成签到,获得积分10
2分钟前
jenny_shjn完成签到,获得积分10
2分钟前
呆呆完成签到 ,获得积分10
2分钟前
kk_1315完成签到,获得积分0
2分钟前
kukudou2发布了新的文献求助10
2分钟前
2分钟前
gtgyh完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413114
求助须知:如何正确求助?哪些是违规求助? 4530302
关于积分的说明 14122810
捐赠科研通 4445237
什么是DOI,文献DOI怎么找? 2439152
邀请新用户注册赠送积分活动 1431216
关于科研通互助平台的介绍 1408591