材料科学
工作职能
能量转换效率
光电子学
费米能级
兴奋剂
图层(电子)
扩散
锌黄锡矿
工作(物理)
太阳能电池
接口(物质)
纳米技术
捷克先令
复合材料
机械工程
工程类
毛细管作用
毛细管数
电子
物理
量子力学
热力学
作者
Jinlin Wang,Jiazheng Zhou,Xiao Xu,Fanqi Meng,Chunxu Xiang,Licheng Lou,Kang Yin,Biwen Duan,Huijue Wu,Jiangjian Shi,Yanhong Luo,Dongmei Li,Hao Xin,Qingbo Meng
标识
DOI:10.1002/adma.202202858
摘要
Aiming at a large open-circuit voltage (VOC ) deficit in Cu2 ZnSn(S,Se)4 (CZTSSe) solar cells, a new and effective strategy to simultaneously regulate the back interface and restrain bulk defects of CZTSSe absorbers is developed by directly introducing a thin GeO2 layer on Mo substrates. Power conversion efficiency (power-to-efficiency) as high as 13.14% with a VOC of 547 mV is achieved for the champion device, which presents a certified efficiency of 12.8% (aperture area: 0.25667 cm2 ). Further investigation reveals that Ge bidirectional diffusion simultaneously occurs toward the CZTSSe absorber and MoSe2 layer at the back interface while being selenized. That is, some Ge element from the GeO2 diffuses into the CZTSSe absorber layer to afford Ge-doped absorbers, which can significantly reduce the defect density and band tailing, and facilitate quasi-Fermi level split by relatively higher hole concentration. Meanwhile, a small amount of Ge element also participates in the formation of MoSe2 at the back interface, thus enhancing the work function of MoSe2 and effectively separating photoinduced carriers. This work highlights the synergistic effect of Ge element toward the bulk absorber and the back interface and also provides an easy-handling way to achieve high-performance CZTSSe solar cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI