Quality-Aware Part Models for Occluded Person Re-Identification

计算机科学 鉴定(生物学) 人工智能 质量(理念) 推论 特征(语言学) 机器学习 身份(音乐) 钥匙(锁) 计算机视觉 模式识别(心理学) 计算机安全 语言学 植物 生物 认识论 物理 哲学 声学
作者
Pengfei Wang,Changxing Ding,Zhiyin Shao,Zhibin Hong,Shengli Zhang,Dacheng Tao
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 3154-3165 被引量:43
标识
DOI:10.1109/tmm.2022.3156282
摘要

Occlusion poses a major challenge for person re-identification (ReID). Existing approaches typically rely on outside tools to infer visible body parts, which may be suboptimal in terms of both computational efficiency and ReID accuracy. In particular, they may fail when facing complex occlusions, such as those between pedestrians. Accordingly, in this paper, we propose a novel method named Quality-aware Part Models (QPM) for occlusion-robust ReID. First, we propose to jointly learn part features and predict part quality scores. As no quality annotation is available, we introduce a strategy that automatically assigns low scores to occluded body parts, thereby weakening the impact of occluded body parts on ReID results. Second, based on the predicted part quality scores, we propose a novel identity-aware spatial attention (ISA) module. In this module, a coarse identity-aware feature is utilized to highlight pixels of the target pedestrian, so as to handle the occlusion between pedestrians. Third, we design an adaptive and efficient approach for generating global features from common non-occluded regions with respect to each image pair. This design is crucial, but is often ignored by existing methods. QPM has three key advantages: 1) it does not rely on any outside tools in either the training or inference stages; 2) it handles occlusions caused by both objects and other pedestrians; 3) it is highly computationally efficient. Experimental results on four popular databases for occluded ReID demonstrate that QPM consistently outperforms state-of-the-art methods by significant margins. The code of QPM is available at https://github.com/Wang-pengfei/QPM .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
月亮河完成签到,获得积分10
刚刚
IBMffff应助内向忆南采纳,获得10
刚刚
天天关注了科研通微信公众号
刚刚
1秒前
2秒前
3秒前
酷炫醉山关注了科研通微信公众号
4秒前
4秒前
5秒前
SSY完成签到,获得积分20
5秒前
木言发布了新的文献求助10
8秒前
9秒前
9秒前
良陈美景奈何天完成签到 ,获得积分20
9秒前
10秒前
Cynthia发布了新的文献求助10
10秒前
海雅完成签到 ,获得积分10
12秒前
12秒前
13秒前
CodeCraft应助若冰采纳,获得10
14秒前
英俊的铭应助科研通管家采纳,获得10
15秒前
1257应助科研通管家采纳,获得10
15秒前
彭于晏应助科研通管家采纳,获得10
16秒前
桐桐应助科研通管家采纳,获得10
16秒前
汉堡包应助科研通管家采纳,获得10
16秒前
深情安青应助科研通管家采纳,获得10
16秒前
CodeCraft应助科研通管家采纳,获得10
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
完美世界应助科研通管家采纳,获得10
16秒前
领导范儿应助科研通管家采纳,获得10
16秒前
丘比特应助科研通管家采纳,获得10
16秒前
dsaifjs发布了新的文献求助10
16秒前
华仔应助科研通管家采纳,获得10
16秒前
木言完成签到,获得积分10
17秒前
Fred Guan应助科研通管家采纳,获得10
17秒前
1257应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得20
17秒前
丘比特应助科研通管家采纳,获得10
17秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
蔺烨磊完成签到,获得积分10
18秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141883
求助须知:如何正确求助?哪些是违规求助? 2792846
关于积分的说明 7804392
捐赠科研通 2449137
什么是DOI,文献DOI怎么找? 1303086
科研通“疑难数据库(出版商)”最低求助积分说明 626769
版权声明 601265