Single-Image Reflection Removal Using Deep Learning: A Systematic Review

计算机科学 深度学习 反射(计算机编程) 数字图书馆 领域(数学) 人工智能 系统回顾 阅读(过程) 能见度 数据科学 情报检索 梅德林 艺术 纯数学 法学 程序设计语言 诗歌 文学类 物理 光学 数学 政治学
作者
Ali Amanlou,Amir Abolfazl Suratgar,Jafar Tavoosi,Ardashir Mohammadzadeh,Amir Mosavi
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 29937-29953 被引量:20
标识
DOI:10.1109/access.2022.3156273
摘要

Images captured through the glass often consist of undesirable specular reflections. These reflections detected in front of the glass remarkably reduce the quality and visibility of the scenes behind it. The process of reflection removal from images through the glass has many important applications in computer vision projects. Recently deep learning-based methods are being utilized for reflection removal so widely. In this article, we proposed a systematic literature review on the topic of single-image reflection removal using deep learning methods which were published between the years 2015 to 2021. A total number of 1600 research papers were extracted from five different online databases and digital libraries (IEEE Xplore, Google Scholar, Science Direct, SpringerLink and ACM Digital Library). After following the study selection procedure, 25 research papers were selected for this systematic review. The selected research papers were then analyzed to answer 7 key research questions that we have come up with to comprehensively explore the use of deep learning and neural networks for single-image reflection removal. After reading this article, future researchers will have a solid idea in the research field and will be able to work on their own research. The results provided in this proposed systematic review illustrate the main challenges that are encountered by researchers in this field and recommend encouraging directions for future research work. This review will also be helpful for researchers in discovering accessible datasets that can be used as benchmarks for comparing their proposed deep learning techniques with other studies in this research area.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
素和姣姣完成签到,获得积分10
6秒前
shinhee完成签到,获得积分10
7秒前
思源应助GEZI采纳,获得10
8秒前
打打应助追寻南珍采纳,获得30
9秒前
zxzx关注了科研通微信公众号
9秒前
调研昵称发布了新的文献求助10
9秒前
9秒前
gluwater完成签到,获得积分20
10秒前
11秒前
万能图书馆应助ddd采纳,获得30
12秒前
小女子常戚戚完成签到,获得积分10
15秒前
等等完成签到,获得积分20
15秒前
vic发布了新的文献求助10
17秒前
Akim应助戴先森采纳,获得10
18秒前
19秒前
20秒前
小十发布了新的文献求助10
20秒前
丘比特应助等等采纳,获得30
22秒前
蒙圈完成签到 ,获得积分10
24秒前
zxzx发布了新的文献求助10
25秒前
hy完成签到,获得积分10
25秒前
26秒前
GEZI发布了新的文献求助10
26秒前
26秒前
天上的云在偷偷看你完成签到,获得积分10
28秒前
29秒前
31秒前
gluwater发布了新的文献求助20
33秒前
戴先森发布了新的文献求助10
35秒前
家家发布了新的文献求助10
36秒前
十二发布了新的文献求助10
39秒前
脑洞疼应助大胆的擎苍采纳,获得10
45秒前
QY11发布了新的文献求助10
46秒前
称心乐枫完成签到,获得积分10
47秒前
47秒前
Ava应助gluwater采纳,获得10
49秒前
51秒前
lin发布了新的文献求助10
51秒前
leichuang应助称心乐枫采纳,获得20
52秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3082549
求助须知:如何正确求助?哪些是违规求助? 2735847
关于积分的说明 7539036
捐赠科研通 2385432
什么是DOI,文献DOI怎么找? 1264844
科研通“疑难数据库(出版商)”最低求助积分说明 612830
版权声明 597685