已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Single-Image Reflection Removal Using Deep Learning: A Systematic Review

计算机科学 深度学习 反射(计算机编程) 数字图书馆 领域(数学) 人工智能 系统回顾 阅读(过程) 能见度 数据科学 情报检索 梅德林 艺术 纯数学 法学 程序设计语言 诗歌 文学类 物理 光学 数学 政治学
作者
Ali Amanlou,Amir Abolfazl Suratgar,Jafar Tavoosi,Ardashir Mohammadzadeh,Amir Mosavi
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 29937-29953 被引量:20
标识
DOI:10.1109/access.2022.3156273
摘要

Images captured through the glass often consist of undesirable specular reflections. These reflections detected in front of the glass remarkably reduce the quality and visibility of the scenes behind it. The process of reflection removal from images through the glass has many important applications in computer vision projects. Recently deep learning-based methods are being utilized for reflection removal so widely. In this article, we proposed a systematic literature review on the topic of single-image reflection removal using deep learning methods which were published between the years 2015 to 2021. A total number of 1600 research papers were extracted from five different online databases and digital libraries (IEEE Xplore, Google Scholar, Science Direct, SpringerLink and ACM Digital Library). After following the study selection procedure, 25 research papers were selected for this systematic review. The selected research papers were then analyzed to answer 7 key research questions that we have come up with to comprehensively explore the use of deep learning and neural networks for single-image reflection removal. After reading this article, future researchers will have a solid idea in the research field and will be able to work on their own research. The results provided in this proposed systematic review illustrate the main challenges that are encountered by researchers in this field and recommend encouraging directions for future research work. This review will also be helpful for researchers in discovering accessible datasets that can be used as benchmarks for comparing their proposed deep learning techniques with other studies in this research area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rencc完成签到,获得积分20
刚刚
ugot发布了新的文献求助10
1秒前
1秒前
PAIDAXXXX发布了新的文献求助10
2秒前
荷兰香猪完成签到,获得积分10
2秒前
yyds发布了新的文献求助10
5秒前
江城一霸完成签到,获得积分10
5秒前
Coconut发布了新的文献求助10
8秒前
阿菜发布了新的文献求助10
8秒前
黄毛虎完成签到 ,获得积分10
9秒前
10秒前
10秒前
yyds发布了新的文献求助10
13秒前
PAIDAXXXX完成签到,获得积分10
16秒前
Lucas应助Coconut采纳,获得10
16秒前
61完成签到 ,获得积分10
17秒前
17秒前
18秒前
ugot完成签到,获得积分10
18秒前
yyds发布了新的文献求助10
22秒前
漂亮的衬衫完成签到,获得积分10
25秒前
Smith.w应助会会小小胖采纳,获得10
25秒前
28秒前
老才完成签到 ,获得积分10
29秒前
yyds发布了新的文献求助10
29秒前
xinjiasuki完成签到 ,获得积分10
32秒前
Lizhenhua完成签到 ,获得积分10
34秒前
pegasus0802完成签到,获得积分10
35秒前
yyds发布了新的文献求助10
38秒前
40秒前
Darcy完成签到,获得积分0
41秒前
斯文败类应助会会小小胖采纳,获得10
43秒前
阿菜完成签到,获得积分10
45秒前
45秒前
别找了睡觉吧完成签到 ,获得积分10
46秒前
yyds发布了新的文献求助30
46秒前
日暮炊烟完成签到 ,获得积分0
47秒前
超级如风完成签到 ,获得积分10
48秒前
Ge发布了新的文献求助30
49秒前
why发布了新的文献求助30
50秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229640
求助须知:如何正确求助?哪些是违规求助? 2877200
关于积分的说明 8198216
捐赠科研通 2544609
什么是DOI,文献DOI怎么找? 1374513
科研通“疑难数据库(出版商)”最低求助积分说明 646978
邀请新用户注册赠送积分活动 621749