肾小球
脚手架
肾小球
生物加工
芯片上器官
临床前试验
计算生物学
医学
肾
微流控
纳米技术
计算机科学
生物医学工程
生物
生物信息学
组织工程
材料科学
肾小球肾炎
内分泌学
作者
Marta G. Valverde,Luis Santiago Mille,Kianti P. Figler,Ernesto Cervantes,Vanessa Y. Li,Joseph V. Bonventre,Rosalinde Masereeuw,Yu Shrike Zhang
标识
DOI:10.1038/s41581-021-00528-x
摘要
The use of biomimetic models of the glomerulus has the potential to improve our understanding of the pathogenesis of kidney diseases and to enable progress in therapeutics. Current in vitro models comprise organ-on-a-chip, scaffold-based and organoid approaches. Glomerulus-on-a-chip designs mimic components of glomerular microfluidic flow but lack the inherent complexity of the glomerular filtration barrier. Scaffold-based 3D culture systems and organoids provide greater microenvironmental complexity but do not replicate fluid flows and dynamic responses to fluidic stimuli. As the available models do not accurately model the structure or filtration function of the glomerulus, their applications are limited. An optimal approach to glomerular modelling is yet to be developed, but the field will probably benefit from advances in biofabrication techniques. In particular, 3D bioprinting technologies could enable the fabrication of constructs that recapitulate the complex structure of the glomerulus and the glomerular filtration barrier. The next generation of in vitro glomerular models must be suitable for high(er)-content or/and high(er)-throughput screening to enable continuous and systematic monitoring. Moreover, coupling of glomerular or kidney models with those of other organs is a promising approach to enable modelling of partial or full-body responses to drugs and prediction of therapeutic outcomes. Here, the authors review current approaches to replication of the glomerulus in vitro with a focus on organ-on-a-chip, scaffolding and organoid technologies. They also discuss future directions of research, including the use of newer 3D biofabrication technologies.
科研通智能强力驱动
Strongly Powered by AbleSci AI