Evolving kernel extreme learning machine for medical diagnosis via a disperse foraging sine cosine algorithm

计算机科学 水准点(测量) 人工智能 机器学习 核(代数) 正弦 极限学习机 算法 离散余弦变换 鉴定(生物学) 一套 人工神经网络 数学 历史 地理 考古 图像(数学) 组合数学 生物 植物 大地测量学 几何学
作者
Jianfu Xia,Daqing Yang,Hong Zhou,Yuyan Chen,Hongliang Zhang,Tong Liu,Ali Asghar Heidari,Huiling Chen,Zhifang Pan
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:141: 105137-105137 被引量:75
标识
DOI:10.1016/j.compbiomed.2021.105137
摘要

Kernel extreme learning machine (KELM) has been widely used in the fields of classification and identification since it was proposed. As the parameters in the KELM model have a crucial impact on performance, they must be optimized before the model can be applied in practical areas. In this study, to improve optimization performance, a new parameter optimization strategy is proposed, based on a disperse foraging sine cosine algorithm (DFSCA), which is utilized to force some portions of search agents to explore other potential regions. Meanwhile, DFSCA is integrated into KELM to establish a new machine learning model named DFSCA-KELM. Firstly, using the CEC2017 benchmark suite, the exploration and exploitation capabilities of DFSCA were demonstrated. Secondly, evaluation of the model DFSCA-KELM on six medical datasets extracted from the UCI machine learning repository for medical diagnosis proved the effectiveness of the proposed model. At last, the model DFSCA-KELM was applied to solve two real medical cases, and the results indicate that DFSCA-KELM can also deal with practical medical problems effectively. Taken together, these results show that the proposed technique can be regarded as a promising tool for medical diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
顺利的若灵完成签到,获得积分10
1秒前
隐形曼青应助过云雨采纳,获得20
1秒前
1秒前
2秒前
2秒前
2秒前
3秒前
3秒前
3秒前
yangmin完成签到,获得积分10
3秒前
4秒前
李志雄发布了新的文献求助10
4秒前
5秒前
风飘絮舞发布了新的文献求助10
6秒前
小木子发布了新的文献求助10
7秒前
传奇3应助奋斗向南采纳,获得10
7秒前
liyiran发布了新的文献求助30
7秒前
7秒前
mmf发布了新的文献求助10
7秒前
犹豫山菡完成签到,获得积分10
8秒前
阔达芾完成签到,获得积分10
8秒前
FashionBoy应助dalibaba采纳,获得10
8秒前
念安发布了新的文献求助10
8秒前
9秒前
9秒前
kk发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
领导范儿应助心信鑫采纳,获得10
11秒前
浮游应助偏偏采纳,获得10
11秒前
科研通AI6应助NGU采纳,获得10
11秒前
nonosense发布了新的文献求助10
11秒前
夹心发布了新的文献求助10
11秒前
11秒前
14秒前
丘比特应助小木子采纳,获得10
14秒前
14秒前
汤圆关注了科研通微信公众号
14秒前
cjdsb发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
The Antibodies, Vol. 2,3,4,5,6 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5461138
求助须知:如何正确求助?哪些是违规求助? 4566175
关于积分的说明 14303831
捐赠科研通 4491884
什么是DOI,文献DOI怎么找? 2460490
邀请新用户注册赠送积分活动 1449811
关于科研通互助平台的介绍 1425582