Evolving kernel extreme learning machine for medical diagnosis via a disperse foraging sine cosine algorithm

计算机科学 水准点(测量) 人工智能 机器学习 核(代数) 正弦 极限学习机 算法 离散余弦变换 鉴定(生物学) 一套 人工神经网络 数学 历史 地理 考古 图像(数学) 组合数学 生物 植物 大地测量学 几何学
作者
Jianfu Xia,Daqing Yang,Hong Zhou,Yuyan Chen,Hongliang Zhang,Tong Liu,Ali Asghar Heidari,Huiling Chen,Zhifang Pan
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:141: 105137-105137 被引量:75
标识
DOI:10.1016/j.compbiomed.2021.105137
摘要

Kernel extreme learning machine (KELM) has been widely used in the fields of classification and identification since it was proposed. As the parameters in the KELM model have a crucial impact on performance, they must be optimized before the model can be applied in practical areas. In this study, to improve optimization performance, a new parameter optimization strategy is proposed, based on a disperse foraging sine cosine algorithm (DFSCA), which is utilized to force some portions of search agents to explore other potential regions. Meanwhile, DFSCA is integrated into KELM to establish a new machine learning model named DFSCA-KELM. Firstly, using the CEC2017 benchmark suite, the exploration and exploitation capabilities of DFSCA were demonstrated. Secondly, evaluation of the model DFSCA-KELM on six medical datasets extracted from the UCI machine learning repository for medical diagnosis proved the effectiveness of the proposed model. At last, the model DFSCA-KELM was applied to solve two real medical cases, and the results indicate that DFSCA-KELM can also deal with practical medical problems effectively. Taken together, these results show that the proposed technique can be regarded as a promising tool for medical diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mazhihao完成签到 ,获得积分10
1秒前
1秒前
Jasper应助自由采纳,获得10
1秒前
WY完成签到,获得积分10
3秒前
大个应助沉默的西牛采纳,获得10
4秒前
张甜完成签到,获得积分10
7秒前
csx应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
Criminology34应助科研通管家采纳,获得10
7秒前
csx应助科研通管家采纳,获得10
7秒前
csx应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
csx应助科研通管家采纳,获得10
7秒前
csx应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
csx应助科研通管家采纳,获得10
7秒前
8秒前
浮游应助甜美的芷采纳,获得10
8秒前
9秒前
Jerry完成签到,获得积分10
9秒前
伊yan完成签到 ,获得积分10
10秒前
zhouqing完成签到,获得积分10
11秒前
11秒前
12秒前
子轩完成签到 ,获得积分10
14秒前
15秒前
飞虎完成签到,获得积分10
16秒前
Jerry发布了新的文献求助10
16秒前
林儿完成签到,获得积分10
16秒前
Andy发布了新的文献求助10
17秒前
季不住完成签到,获得积分10
17秒前
19秒前
稳重乌冬面完成签到 ,获得积分10
20秒前
汉堡怪兽完成签到,获得积分10
21秒前
21秒前
魔幻若血完成签到 ,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565427
求助须知:如何正确求助?哪些是违规求助? 4650458
关于积分的说明 14691289
捐赠科研通 4592348
什么是DOI,文献DOI怎么找? 2519609
邀请新用户注册赠送积分活动 1492011
关于科研通互助平台的介绍 1463199