Fretting fatigue crack initiation mechanism in Ti–6Al–4V

微动 材料科学 裂缝闭合 有限元法 钛合金 剪切(地质) 结构工程 复合材料 应力集中 剪应力 临界切应力 断裂力学 合金 工程类 剪切速率 粘度
作者
S. A. Namjoshi,S. Mall,V. K. Jain,O. Jin
出处
期刊:Fatigue & Fracture of Engineering Materials & Structures [Wiley]
卷期号:25 (10): 955-964 被引量:123
标识
DOI:10.1046/j.1460-2695.2002.00549.x
摘要

ABSTRACT Fretting fatigue crack initiation in titanium alloy, Ti−6Al−4V, was investigated experimentally and analytically by using finite element analysis (FEA). Various types of fretting pads were used in order to determine the effects of contact geometries. Crack initiation location and crack angle orientation along the contact surface were determined by using microscopy. Finite element analysis was used in order to obtain stress state for the experimental conditions used during fretting fatigue tests. These were then used in order to investigate several critical plane based multiaxial fatigue parameters. These parameters were evaluated based on their ability to predict crack initiation location, crack orientation angle along the contact surface and the number of cycles to fretting fatigue crack initiation independent of geometry of fretting pad. These predictions were compared with their experimental counterparts in order to characterize the role of normal and shear stresses on fretting fatigue crack initiation. From these comparisons, fretting fatigue crack initiation mechanism in the tested titanium alloy appears to be governed by shear stress on the critical plane. However, normal stress on the critical plane also seems to play a role in fretting fatigue life. At present, the individual contributions/importance of shear and normal stresses in the crack initiation appears to be unclear; however, it is clear that any critical plane describing fretting fatigue crack initiation behaviour independent of geometry needs to include components of both shear and normal stresses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
landolu发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
4秒前
耍酷的夏云关注了科研通微信公众号
5秒前
Lynnyue完成签到,获得积分10
5秒前
if发布了新的文献求助100
7秒前
7秒前
8秒前
weven完成签到 ,获得积分10
8秒前
9秒前
叶落花开应助Anquan采纳,获得10
12秒前
车小帅完成签到,获得积分10
14秒前
AI倩完成签到 ,获得积分10
17秒前
17秒前
17秒前
顾矜应助好玩和有趣采纳,获得10
18秒前
萊以托尔福完成签到,获得积分10
18秒前
平淡思雁完成签到,获得积分10
19秒前
西兰花的科研小助手完成签到,获得积分10
22秒前
小猫多鱼发布了新的文献求助10
22秒前
呆呆完成签到,获得积分10
23秒前
忆韵发布了新的文献求助10
23秒前
善良的灵羊完成签到 ,获得积分10
23秒前
25秒前
25秒前
鸠摩智完成签到,获得积分10
26秒前
高贵绿草完成签到,获得积分10
27秒前
圣晟胜发布了新的文献求助10
29秒前
devil发布了新的文献求助20
30秒前
Hina完成签到,获得积分10
30秒前
31秒前
33秒前
Fairy完成签到,获得积分10
34秒前
林林林发布了新的文献求助10
35秒前
lihang完成签到 ,获得积分10
35秒前
36秒前
james完成签到,获得积分10
38秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528020
求助须知:如何正确求助?哪些是违规求助? 3108260
关于积分的说明 9288139
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540202
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849