Liquid Organic Hydrogen Carrier (LOHC) – Assessment based on chemical and economic properties

汽油 甲酸 甲苯 催化作用 材料科学 化学 化学工程 氢气储存 有机化学 工程类
作者
M. Niermann,Alexander Beckendorff,Martin Kaltschmitt,Klaus Bonhoff
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:44 (13): 6631-6654 被引量:393
标识
DOI:10.1016/j.ijhydene.2019.01.199
摘要

Hydrogen can be transported via long distances based on Liquid Organic Hydrogen Carriers (LOHC). Such a transport is realized based on a two-step cycle: (1) loading/storage of hydrogen (hydrogenation) into the LOHC molecule and (2) unloading/release of hydrogen (de-hydrogenation). During the storage period, hydrogen is covalently bound to the respective LOHC. Since the (optimal) LOHC is liquid at ambient conditions and shows similar properties as crude oil based liquids (e.g. diesel, gasoline), it can easily be handled, transported and stored; thus a stepwise implementation using the existing crude oil based infrastructure would be possible. Against this background this paper reviews the current knowledge in hydrogenation and de-hydrogenation of various LOHC. Therefore, a variety of LOHC is evaluated based on their properties and compared to each other. By applying different evaluation criteria representing the requirements of the three different application areas (energy-storage, energy-transport, mobility application), the LOHCs can be assigned to a field they suit best. The analysis shows that the most promising LOHC candidates to date are dibenzyltoluene for energy-transport and energy-storage as well as N-ethylcarbazole for mobility applications. In addition, a use of toluene in the transport sector is also conceivable. Methanol can potentially be applied in all three application fields due to its properties if a compromise between de-hydrogenation temperature and gas flow can be achieved based on further R&D-activities. For future implementation phenazine and formic acid show great potential, but also additional R&D especially regarding catalysis and solvents is necessary.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
情怀应助zzzmmmhhh采纳,获得10
2秒前
icebear完成签到,获得积分10
3秒前
四叶草发布了新的文献求助30
3秒前
李健的小迷弟应助gayfall采纳,获得10
4秒前
楠楠发布了新的文献求助10
4秒前
carbon-dots发布了新的文献求助10
5秒前
木棉完成签到,获得积分10
9秒前
海参完成签到,获得积分10
10秒前
酷波er应助小菇凉采纳,获得10
10秒前
11秒前
赘婿应助潇洒忘幽采纳,获得10
12秒前
传奇3应助枝桠采纳,获得10
13秒前
烦烦烦方法完成签到,获得积分10
15秒前
16秒前
whr0458完成签到,获得积分10
18秒前
卓若之完成签到 ,获得积分10
18秒前
18秒前
完美行云完成签到,获得积分10
19秒前
殊桐完成签到,获得积分10
20秒前
20秒前
20秒前
小笑完成签到,获得积分10
20秒前
Hello应助能干可兰采纳,获得10
20秒前
俭朴山兰发布了新的文献求助10
23秒前
李子木发布了新的文献求助10
23秒前
23秒前
23秒前
Akim应助Xu_W卜采纳,获得10
24秒前
Tong发布了新的文献求助10
25秒前
嘀嘀哒哒发布了新的文献求助10
25秒前
啊啊啊完成签到 ,获得积分10
26秒前
27秒前
无花果应助小千采纳,获得10
27秒前
mingjie发布了新的文献求助10
28秒前
29秒前
算了发布了新的文献求助30
31秒前
能干可兰发布了新的文献求助10
32秒前
D1504009654完成签到,获得积分10
34秒前
香蕉觅云应助holic采纳,获得10
34秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
《粉体与多孔固体材料的吸附原理、方法及应用》(需要中文翻译版,化学工业出版社,陈建,周力,王奋英等译) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3084389
求助须知:如何正确求助?哪些是违规求助? 2737327
关于积分的说明 7544689
捐赠科研通 2386947
什么是DOI,文献DOI怎么找? 1265702
科研通“疑难数据库(出版商)”最低求助积分说明 613158
版权声明 598320