Magic-Wall: Visualizing Room Decoration by Enhanced Wall Segmentation

图像分割 魔术(望远镜) 计算机图形学(图像) 渲染(计算机图形)
作者
Ting Liu,Yunchao Wei,Yao Zhao,Si Liu,Shikui Wei
出处
期刊:IEEE Transactions on Image Processing 卷期号:28 (9): 4219-4232 被引量:1
标识
DOI:10.1109/tip.2019.2908064
摘要

This paper presents an intelligent system named Magic-wall, which enables visualization of the effect of room decoration automatically. Concretely, given an image of the indoor scene and a preferred color, the Magic-wall can automatically locate the wall regions in the image and smoothly replace the existing wall with the required one. The key idea of the proposed Magic-wall is to leverage visual semantics to guide the entire process of color substitution, including wall segmentation and replacement. To strengthen the reality of visualization, we make the following contributions. First, we propose an edge-aware fully convolutional neural network (Edge-aware-FCN) for indoor semantic scene parsing, in which a novel edge-prior branch is introduced to identify the boundary of different semantic regions better. To further polish the details between the wall and other semantic regions, we leverage the output of Edge-aware-FCN as the prior knowledge, concatenating with the image to form a new input for the Enhanced-Net. In such a case, the Enhanced-Net is able to capture more semantic-aware information from the input and polish some ambiguous regions. Finally, to naturally replace the color of the original walls, a simple yet effective color space conversion method is proposed for replacement with brightness reserved. We build a new indoor scene dataset upon ADE20K for training and testing, which includes six semantic labels. Extensive experimental evaluations and visualizations well demonstrate that the proposed Magic-wall is effective and can automatically generate a set of visually pleasing results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
loga80完成签到,获得积分0
刚刚
aowulan完成签到 ,获得积分10
刚刚
xy完成签到,获得积分10
2秒前
hanshishengye完成签到 ,获得积分10
2秒前
5秒前
5秒前
Beyond095完成签到,获得积分10
6秒前
7秒前
木又完成签到 ,获得积分10
8秒前
陈诗柳完成签到 ,获得积分10
9秒前
苏南完成签到 ,获得积分10
9秒前
cis2014完成签到,获得积分10
10秒前
WSYang完成签到,获得积分10
12秒前
迈克老狼完成签到 ,获得积分10
14秒前
shrimp5215完成签到,获得积分10
14秒前
littleE完成签到 ,获得积分10
15秒前
鱼儿忆流年完成签到 ,获得积分10
16秒前
applepie完成签到,获得积分10
17秒前
材料若饥完成签到,获得积分10
20秒前
饱满语风完成签到 ,获得积分10
22秒前
Sam完成签到,获得积分10
23秒前
美海与鱼完成签到,获得积分10
29秒前
子非鱼完成签到 ,获得积分10
30秒前
30秒前
快乐的土土完成签到 ,获得积分10
32秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
咻咻应助科研通管家采纳,获得20
34秒前
NexusExplorer应助科研通管家采纳,获得10
34秒前
37秒前
Clover完成签到 ,获得积分10
38秒前
41秒前
余鱼鱼发布了新的文献求助10
42秒前
幼荷完成签到 ,获得积分10
46秒前
talpionchen完成签到,获得积分10
50秒前
白日焰火完成签到 ,获得积分10
58秒前
春夏秋冬完成签到 ,获得积分20
58秒前
offshore完成签到 ,获得积分10
1分钟前
呆萌的正豪完成签到 ,获得积分20
1分钟前
1分钟前
chenshi0515完成签到 ,获得积分10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311313
求助须知:如何正确求助?哪些是违规求助? 2944006
关于积分的说明 8516883
捐赠科研通 2619447
什么是DOI,文献DOI怎么找? 1432306
科研通“疑难数据库(出版商)”最低求助积分说明 664597
邀请新用户注册赠送积分活动 649856