锂(药物)
化学工程
材料科学
电极
电池(电)
微乳液
聚合物
电导率
导电聚合物
阴极
无机化学
化学
复合材料
物理化学
功率(物理)
内分泌学
工程类
物理
医学
量子力学
肺表面活性物质
作者
Min Ling,Jingxia Qiu,Sheng Li,Cheng Yan,Milton J. Kiefel,Gao Liu,Shanqing Zhang
出处
期刊:Nano Letters
[American Chemical Society]
日期:2015-06-10
卷期号:15 (7): 4440-4447
被引量:102
标识
DOI:10.1021/acs.nanolett.5b00795
摘要
An environmentally benign, highly conductive, and mechanically strong binder system can overcome the dilemma of low conductivity and insufficient mechanical stability of the electrodes to achieve high performance lithium ion batteries (LIBs) at a low cost and in a sustainable way. In this work, the naturally occurring binder sodium alginate (SA) is functionalized with 3,4-propylenedioxythiophene-2,5-dicarboxylic acid (ProDOT) via a one-step esterification reaction in a cyclohexane/dodecyl benzenesulfonic acid (DBSA)/water microemulsion system, resulting in a multifunctional polymer binder, that is, SA-PProDOT. With the synergetic effects of the functional groups (e.g., carboxyl, hydroxyl, and ester groups), the resultant SA-PProDOT polymer not only maintains the outstanding binding capabilities of sodium alginate but also enhances the mechanical integrity and lithium ion diffusion coefficient in the LiFePO4 (LFP) electrode during the operation of the batteries. Because of the conjugated network of the PProDOT and the lithium doping under the battery environment, the SA-PProDOT becomes conductive and matches the conductivity needed for LiFePO4 LIBs. Without the need of conductive additives such as carbon black, the resultant batteries have achieved the theoretical specific capacity of LiFePO4 cathode (ca. 170 mAh/g) at C/10 and ca. 120 mAh/g at 1C for more than 400 cycles.
科研通智能强力驱动
Strongly Powered by AbleSci AI