钙钛矿(结构)
材料科学
四氟硼酸盐
钝化
碘化物
光致发光
卤化物
甲脒
量子产额
无辐射复合
三卤化物
密度泛函理论
化学物理
物理化学
无机化学
纳米技术
光电子学
结晶学
计算化学
催化作用
化学
有机化学
光学
离子液体
半导体
物理
荧光
图层(电子)
半导体材料
作者
Satyawan Nagane,Stuart Macpherson,Michael A. Hope,Dominik Kubicki,Weiwei Li,Sachin Verma,Jordi Ferrer Orri,Yu‐Hsien Chiang,Judith L. MacManus‐Driscoll,Clare P. Grey,Samuel D. Stranks
标识
DOI:10.1002/adma.202102462
摘要
Abstract Hybrid‐perovskite‐based optoelectronic devices are demonstrating unprecedented growth in performance, and defect passivation approaches are highly promising routes to further improve properties. Here, the effect of the molecular ion BF 4 − , introduced via methylammonium tetrafluoroborate (MABF 4 ) in a surface treatment for MAPbI 3 perovskite, is reported. Optical spectroscopy characterization shows that the introduction of tetrafluoroborate leads to reduced non‐radiative charge‐carrier recombination with a reduction in first‐order recombination rate from 6.5 × 10 6 to 2.5 × 10 5 s −1 in BF 4 − ‐treated samples, and a consequent increase in photoluminescence quantum yield by an order of magnitude (from 0.5 to 10.4%). 19 F, 11 B, and 14 N solid‐state NMR is used to elucidate the atomic‐level mechanism of the BF 4 − additive‐induced improvements, revealing that the BF 4 − acts as a scavenger of excess MAI by forming MAI–MABF 4 cocrystals. This shifts the equilibrium of iodide concentration in the perovskite phase, thereby reducing the concentration of interstitial iodide defects that act as deep traps and non‐radiative recombination centers. These collective results allow us to elucidate the microscopic mechanism of action of BF 4 − .
科研通智能强力驱动
Strongly Powered by AbleSci AI