A Comprehensive Review of Computational Methods For Drug-Drug Interaction Detection

计算机科学 药物警戒 机器学习 药物与药物的相互作用 药品 人工智能 数据科学 数据挖掘 医学 药理学
作者
Yang Qiu,Yang Zhang,Yifan Deng,Shichao Liu,Wen Zhang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (4): 1968-1985 被引量:64
标识
DOI:10.1109/tcbb.2021.3081268
摘要

The detection of drug-drug interactions (DDIs) is a crucial task for drug safety surveillance, which provides effective and safe co-prescriptions of multiple drugs. Since laboratory researches are often complicated, costly and time-consuming, it's urgent to develop computational approaches to detect drug-drug interactions. In this paper, we conduct a comprehensive review of state-of-the-art computational methods falling into three categories: literature-based extraction methods, machine learning-based prediction methods and pharmacovigilance-based data mining methods. Literature-based extraction methods detect DDIs from published literature using natural language processing techniques; machine learning-based prediction methods build prediction models based on the known DDIs in databases and predict novel ones; pharmacovigilance-based data mining methods usually apply statistical techniques on various electronic data to detect drug-drug interaction signals. We first present the taxonomy of drug-drug interaction detection methods and provide the outlines of three categories of methods. Afterwards, we respectively introduce research backgrounds and data sources of three categories, and illustrate their representative approaches as well as evaluation metrics. Finally, we discuss the current challenges of existing methods and highlight potential opportunities for future directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浦肯野给Mira的求助进行了留言
1秒前
YiPeng完成签到,获得积分10
2秒前
芝麻汤圆完成签到,获得积分10
3秒前
詹姆斯发布了新的文献求助10
4秒前
小文发布了新的文献求助10
4秒前
梁朝伟应助bamboo采纳,获得10
4秒前
5秒前
啊哈完成签到,获得积分10
5秒前
酷炫的凤妖完成签到 ,获得积分10
6秒前
天天快乐应助ardejiang采纳,获得10
7秒前
8秒前
8秒前
tourist585应助冷静新烟采纳,获得10
8秒前
直率寒荷关注了科研通微信公众号
10秒前
muyangsiyuan发布了新的文献求助10
10秒前
10秒前
搜集达人应助机智半双采纳,获得10
11秒前
11秒前
医学小王关注了科研通微信公众号
11秒前
12秒前
万能图书馆应助苹果白山采纳,获得30
13秒前
姜姜发布了新的文献求助10
13秒前
112233发布了新的文献求助10
13秒前
14秒前
学术废物发布了新的文献求助10
14秒前
赵子轩发布了新的文献求助10
15秒前
zhangmeimei发布了新的文献求助10
15秒前
IceZong完成签到 ,获得积分10
16秒前
闫伊森完成签到,获得积分10
17秒前
17秒前
18秒前
gttzka完成签到,获得积分10
18秒前
机智半双完成签到,获得积分10
20秒前
20秒前
muyangsiyuan完成签到,获得积分20
20秒前
700w完成签到 ,获得积分0
21秒前
小二郎应助Alan采纳,获得10
21秒前
21秒前
22秒前
莫西莫西完成签到,获得积分10
22秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3477027
求助须知:如何正确求助?哪些是违规求助? 3068547
关于积分的说明 9108474
捐赠科研通 2759970
什么是DOI,文献DOI怎么找? 1514539
邀请新用户注册赠送积分活动 700313
科研通“疑难数据库(出版商)”最低求助积分说明 699422