Bayesian ancestral reconstruction for bat echolocation

人体回声定位 贝叶斯概率 贝叶斯推理 计算机科学 推论 人工智能 高斯过程 机器学习 高斯分布 生物 物理 量子力学 神经科学
作者
Joseph Patrick Meagher
链接
摘要

Ancestral reconstruction can be understood as an interpolation between measured characteristics of existing populations to those of their common ancestors. Doing so provides an insight into the characteristics of organisms that lived millions of years ago. Such reconstructions are inherently uncertain, making this an ideal application area for Bayesian statistics. As such, Gaussian processes serve as a basis for many probabilistic models for trait evolution, which assume that measured characteristics, or some transformation of those characteristics, are jointly Gaussian distributed. While these models do provide a theoretical basis for uncertainty quantification in ancestral reconstruction, practical approaches to their implementation have proven challenging. In this thesis, novel Bayesian methods for ancestral reconstruction are developed and applied to bat echolocation calls. This work proposes the first fully Bayesian approach to inference within the Phylogenetic Gaussian Process Regression framework for Function-Valued Traits, producing an ancestral reconstruction for which any uncertainty in this model may be quantified. The framework is then generalised to collections of discrete and continuous traits, and an efficient approximate Bayesian inference scheme proposed, representing the first application of Variational inference techniques to the problem of ancestral reconstruction. This efficient approach is then applied to the reconstruction of bat echolocation calls, providing new insights into the developmental pathways of this remarkable characteristic. It is the complexity of bat echolocation that motivates the proposed approach to evolutionary inference, however, the resulting statistical methods are broadly applicable within the field of Evolutionary Biology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助zcs采纳,获得10
1秒前
Jay完成签到,获得积分10
1秒前
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
2秒前
2秒前
Hello应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
小蔡完成签到,获得积分10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
上官若男应助AN采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得30
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
Sakura9235完成签到 ,获得积分10
3秒前
3秒前
咸鱼不翻身应助小米粥采纳,获得10
3秒前
4秒前
浮游应助KBRS采纳,获得10
4秒前
我是老大应助繁荣的夏烟采纳,获得10
5秒前
6秒前
平安只喜乐完成签到,获得积分10
6秒前
苹果不平完成签到,获得积分10
6秒前
6秒前
Pinkie完成签到,获得积分10
7秒前
坦率依柔发布了新的文献求助30
7秒前
小何发布了新的文献求助10
8秒前
stay发布了新的文献求助10
8秒前
嗯嗯完成签到,获得积分10
8秒前
9秒前
9秒前
小胡胡完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5576966
求助须知:如何正确求助?哪些是违规求助? 4662231
关于积分的说明 14740378
捐赠科研通 4602878
什么是DOI,文献DOI怎么找? 2525991
邀请新用户注册赠送积分活动 1495885
关于科研通互助平台的介绍 1465470