Bayesian ancestral reconstruction for bat echolocation

人体回声定位 贝叶斯概率 贝叶斯推理 计算机科学 推论 人工智能 高斯过程 机器学习 高斯分布 生物 量子力学 物理 神经科学
作者
Joseph Patrick Meagher
链接
摘要

Ancestral reconstruction can be understood as an interpolation between measured characteristics of existing populations to those of their common ancestors. Doing so provides an insight into the characteristics of organisms that lived millions of years ago. Such reconstructions are inherently uncertain, making this an ideal application area for Bayesian statistics. As such, Gaussian processes serve as a basis for many probabilistic models for trait evolution, which assume that measured characteristics, or some transformation of those characteristics, are jointly Gaussian distributed. While these models do provide a theoretical basis for uncertainty quantification in ancestral reconstruction, practical approaches to their implementation have proven challenging. In this thesis, novel Bayesian methods for ancestral reconstruction are developed and applied to bat echolocation calls. This work proposes the first fully Bayesian approach to inference within the Phylogenetic Gaussian Process Regression framework for Function-Valued Traits, producing an ancestral reconstruction for which any uncertainty in this model may be quantified. The framework is then generalised to collections of discrete and continuous traits, and an efficient approximate Bayesian inference scheme proposed, representing the first application of Variational inference techniques to the problem of ancestral reconstruction. This efficient approach is then applied to the reconstruction of bat echolocation calls, providing new insights into the developmental pathways of this remarkable characteristic. It is the complexity of bat echolocation that motivates the proposed approach to evolutionary inference, however, the resulting statistical methods are broadly applicable within the field of Evolutionary Biology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
豆花完成签到,获得积分10
1秒前
1秒前
1秒前
蔬菜狗狗发布了新的文献求助10
2秒前
2秒前
机灵夜云完成签到,获得积分10
2秒前
3秒前
充电宝应助闪闪尔白采纳,获得30
3秒前
风的旅人完成签到,获得积分10
3秒前
兰瓜瓜完成签到,获得积分20
4秒前
机灵的冰夏完成签到,获得积分10
4秒前
5秒前
和谐初南发布了新的文献求助10
5秒前
bamboo完成签到,获得积分10
5秒前
5秒前
顺心的定帮完成签到 ,获得积分10
5秒前
Orochimaru发布了新的文献求助30
5秒前
KL完成签到,获得积分10
6秒前
wanci应助123采纳,获得10
6秒前
李爱国应助研友_Z1eDgZ采纳,获得10
7秒前
小巧雪糕关注了科研通微信公众号
7秒前
寒冷乐驹发布了新的文献求助10
7秒前
7秒前
我和老俞一起冲完成签到,获得积分10
7秒前
7秒前
7秒前
ding应助要减肥的香芦采纳,获得10
8秒前
8秒前
啾咪啾咪完成签到,获得积分20
8秒前
8秒前
8秒前
8秒前
眼睛大的尔蝶完成签到,获得积分10
9秒前
诚心采白完成签到,获得积分10
9秒前
Salut发布了新的文献求助30
9秒前
fee发布了新的文献求助10
11秒前
fly the bike完成签到,获得积分10
12秒前
cty发布了新的文献求助10
12秒前
Fyyyyyyyyyz发布了新的文献求助10
12秒前
高分求助中
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3122411
求助须知:如何正确求助?哪些是违规求助? 2772885
关于积分的说明 7714973
捐赠科研通 2428396
什么是DOI,文献DOI怎么找? 1289747
科研通“疑难数据库(出版商)”最低求助积分说明 621504
版权声明 600183