DLAB: deep learning methods for structure-based virtual screening of antibodies

抗体 虚拟筛选 计算机科学 计算生物学 药物发现 人工智能 深度学习 生物 生物信息学 遗传学
作者
Constantin Schneider,Andrew Buchanan,Bruck Taddese,Charlotte M. Deane
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:38 (2): 377-383 被引量:66
标识
DOI:10.1093/bioinformatics/btab660
摘要

Antibodies are one of the most important classes of pharmaceuticals, with over 80 approved molecules currently in use against a wide variety of diseases. The drug discovery process for antibody therapeutic candidates however is time- and cost-intensive and heavily reliant on in vivo and in vitro high throughput screens. Here, we introduce a framework for structure-based deep learning for antibodies (DLAB) which can virtually screen putative binding antibodies against antigen targets of interest. DLAB is built to be able to predict antibody-antigen binding for antigens with no known antibody binders.We demonstrate that DLAB can be used both to improve antibody-antigen docking and structure-based virtual screening of antibody drug candidates. DLAB enables improved pose ranking for antibody docking experiments as well as selection of antibody-antigen pairings for which accurate poses are generated and correctly ranked. We also show that DLAB can identify binding antibodies against specific antigens in a case study. Our results demonstrate the promise of deep learning methods for structure-based virtual screening of antibodies.The DLAB source code and pre-trained models are available at https://github.com/oxpig/dlab-public.Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苹果花完成签到,获得积分10
1秒前
2秒前
flc1210发布了新的文献求助10
2秒前
酷波er应助宋小姐冲鸭采纳,获得10
3秒前
3秒前
3秒前
香蕉觅云应助mochen0722采纳,获得30
3秒前
3秒前
3秒前
3秒前
3秒前
4秒前
桥桥发布了新的文献求助10
4秒前
鑫鑫子发布了新的文献求助10
4秒前
清爽的丸子完成签到,获得积分10
5秒前
5秒前
Orange应助ynn采纳,获得10
5秒前
领导范儿应助madefu采纳,获得10
5秒前
bing发布了新的文献求助10
6秒前
Owen应助孟子豪采纳,获得10
6秒前
liying发布了新的文献求助10
7秒前
共享精神应助乐观的星月采纳,获得10
7秒前
7秒前
OHDJSZMS完成签到,获得积分10
7秒前
Sonny发布了新的文献求助10
7秒前
科研通AI2S应助犹豫梨愁采纳,获得10
8秒前
RR发布了新的文献求助10
8秒前
8秒前
CodeCraft应助荣荣酱采纳,获得10
9秒前
Jasper应助yu采纳,获得10
9秒前
9秒前
10秒前
10秒前
sirhai发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
wanci应助简单澜采纳,获得10
12秒前
13秒前
SYLH应助zToZj采纳,获得50
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3525386
求助须知:如何正确求助?哪些是违规求助? 3105990
关于积分的说明 9277903
捐赠科研通 2803436
什么是DOI,文献DOI怎么找? 1538711
邀请新用户注册赠送积分活动 716339
科研通“疑难数据库(出版商)”最低求助积分说明 709395