A Direct Regression Scene Text Detector With Position-Sensitive Segmentation

计算机科学 人工智能 分割 棱锥(几何) 联营 回归 职位(财务) 模式识别(心理学) 推论 图像分割 基本事实 计算机视觉 数学 统计 经济 几何学 财务
作者
Peirui Cheng,Yuanqiang Cai,Weiqiang Wang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:30 (11): 4171-4181 被引量:21
标识
DOI:10.1109/tcsvt.2019.2947475
摘要

Direct regression methods have demonstrated their success on various multi-oriented benchmarks for scene text detection due to the high recall rate for small targets and the direct regression for text boxes. However, too many false positive candidates and inaccurate position regression still limit the performance of these methods. In this paper, we propose an end-to-end method by introducing position-sensitive segmentation into the direct regression method to overcome these shortcomings. We generate the ground truth of position-sensitive segmentation maps based on the information of text boxes so that the position-sensitive segmentation module can be trained synchronously with the direct regression module. Besides, more information about the relative position of text is provided for the network through the training of position-sensitive segmentation maps, which improves the expressiveness of the network. We also introduce spatial pyramid of position-sensitive segmentation into the proposed method considering the huge differences in sizes and aspect ratios of scene texts and we propose position-sensitive COI(Corner area of Interest) pooling into the proposed method to speed up the inference. Experiments on datasets ICDAR2015, MLT-17 and COCO-Text demonstrate that the proposed method has a comparable performance with state-of-the-art methods while it is more efficient. We also provide abundant ablation experiments to demonstrate the effectiveness of these improvements in our proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lee完成签到,获得积分10
刚刚
刚刚
NN发布了新的文献求助30
3秒前
无奈的囧发布了新的文献求助10
4秒前
wsq发布了新的文献求助10
5秒前
余增辉完成签到 ,获得积分10
5秒前
姚琳完成签到,获得积分10
5秒前
常常完成签到 ,获得积分10
6秒前
SciGPT应助月夙采纳,获得10
6秒前
yin发布了新的文献求助10
6秒前
7秒前
7秒前
姚琳发布了新的文献求助10
7秒前
9秒前
10秒前
大模型应助柚子采纳,获得10
10秒前
czyzyzy完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得10
12秒前
英俊的铭应助科研通管家采纳,获得10
12秒前
彭于晏应助科研通管家采纳,获得10
12秒前
12秒前
上官若男应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
12秒前
爱科研发布了新的文献求助10
12秒前
orixero应助chi采纳,获得10
13秒前
无奈的天菱完成签到,获得积分10
13秒前
13秒前
贝贝贝发布了新的文献求助10
14秒前
愿爱无忧发布了新的文献求助10
15秒前
gotolian关注了科研通微信公众号
15秒前
15秒前
科研通AI2S应助研友_LOoomL采纳,获得10
16秒前
17秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233513
求助须知:如何正确求助?哪些是违规求助? 2880149
关于积分的说明 8213874
捐赠科研通 2547481
什么是DOI,文献DOI怎么找? 1377007
科研通“疑难数据库(出版商)”最低求助积分说明 647713
邀请新用户注册赠送积分活动 623154