SHEDR: An End-to-End Neural Event Detection and Recommendation Framework for Hyperlocal News Using Social Media

端到端原则 社会化媒体 计算机科学 事件(粒子物理) 最终用户 死胡同 万维网 人工智能 心理学 物理 社会心理学 量子力学 补偿(心理学)
作者
Yuheng Hu,Yili Hong
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.3677461
摘要

Residents often rely on newspapers and television to gather hyperlocal news for community awareness and engagement. More recently, social media have emerged as an increasingly important source of hyperlocal news. Thus far, the Information System (IS) literature on using social media to create desirable societal benefits, such as civic awareness and engagement, is still in its infancy. One key challenge in this research stream is to timely and accurately distill information from noisy social media data streams to community members. In this work, we develop SHEDR (Social Me-dia-based Hyperlocal Event Detection & Recommendation), an end-to-end neural event detection and recommendation framework on Twitter to facilitate residents’ information-seeking of hyperlo-cal events. The key innovation in SHDER lies in the design of the hyperlocal event detector and the event recommender. First, we harness the power of two popular deep neural network models, CNN and LSTM, in a joint CNN-LSTM model to characterize spatial-temporal dependencies for capturing unusualness in a region of interest, which is classified as a hyperlocal event. Next, we develop a neural pair-wise ranking algorithm for recommending detected hyperlocal events t resi-dents based on their interests. To alleviate the sparsity issue and improve personalization, our algo-rithm incorporates several types of contextual information covering topic, social and geographical proximities. We perform comprehensive evaluations based on two large scale datasets comprising geotagged tweets covering Seattle and Chicago. We demonstrate the effectiveness of our frame-work in comparison to several state-of-the-art approaches. We show that our hyperlocal event de-tection and recommendation models consistently and significantly outperform other approaches in terms of precision, recall, and F-1 scores.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助LZHWSND采纳,获得10
2秒前
2秒前
油菜籽完成签到 ,获得积分10
3秒前
小巧的雁丝完成签到,获得积分10
4秒前
戴先森发布了新的文献求助10
5秒前
6秒前
6秒前
小刘发布了新的文献求助10
9秒前
曦曦完成签到 ,获得积分20
9秒前
10秒前
10秒前
坚强的忻关注了科研通微信公众号
11秒前
靓丽翩跹发布了新的文献求助10
12秒前
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
Singularity应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
萧水白应助科研通管家采纳,获得10
15秒前
wanci应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
脑洞疼应助科研通管家采纳,获得10
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
15秒前
所所应助科研通管家采纳,获得10
15秒前
CipherSage应助科研通管家采纳,获得10
16秒前
unlimit应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
16秒前
16秒前
monere应助小海狸采纳,获得20
16秒前
jevon应助小刘采纳,获得20
17秒前
共享精神应助huang1采纳,获得10
17秒前
17秒前
18秒前
19秒前
19秒前
LZHWSND发布了新的文献求助10
20秒前
pahnky完成签到,获得积分20
20秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243931
求助须知:如何正确求助?哪些是违规求助? 2887823
关于积分的说明 8249972
捐赠科研通 2556414
什么是DOI,文献DOI怎么找? 1384595
科研通“疑难数据库(出版商)”最低求助积分说明 649901
邀请新用户注册赠送积分活动 625907