Using gradient boosting with stability selection on health insurance claims data to identify disease trajectories in chronic obstructive pulmonary disease

医学 疾病 肺病 Boosting(机器学习) 医学诊断 背景(考古学) 重症监护医学 内科学 计算机科学 机器学习 病理 生物 古生物学
作者
Tina Ploner,Steffen Heß,Marcus Grum,Philipp Drewe-Boß,Jochen Walker
出处
期刊:Statistical Methods in Medical Research [SAGE]
卷期号:29 (12): 3684-3694 被引量:9
标识
DOI:10.1177/0962280220938088
摘要

Objective We propose a data-driven method to detect temporal patterns of disease progression in high-dimensional claims data based on gradient boosting with stability selection. Materials and methods We identified patients with chronic obstructive pulmonary disease in a German health insurance claims database with 6.5 million individuals and divided them into a group of patients with the highest disease severity and a group of control patients with lower severity. We then used gradient boosting with stability selection to determine variables correlating with a chronic obstructive pulmonary disease diagnosis of highest severity and subsequently model the temporal progression of the disease using the selected variables. Results We identified a network of 20 diagnoses (e.g. respiratory failure), medications (e.g. anticholinergic drugs) and procedures associated with a subsequent chronic obstructive pulmonary disease diagnosis of highest severity. Furthermore, the network successfully captured temporal patterns, such as disease progressions from lower to higher severity grades. Discussion The temporal trajectories identified by our data-driven approach are compatible with existing knowledge about chronic obstructive pulmonary disease showing that the method can reliably select relevant variables in a high-dimensional context. Conclusion We provide a generalizable approach for the automatic detection of disease trajectories in claims data. This could help to diagnose diseases early, identify unknown risk factors and optimize treatment plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助ziyiziyi采纳,获得10
1秒前
1秒前
1秒前
屹舟完成签到,获得积分10
2秒前
zjudxn关注了科研通微信公众号
2秒前
3秒前
3秒前
科研通AI5应助hu970采纳,获得10
3秒前
3秒前
艺玲发布了新的文献求助10
4秒前
咚咚咚完成签到,获得积分10
4秒前
芋圆Z.完成签到,获得积分10
4秒前
atad2发布了新的文献求助10
4秒前
li梨完成签到,获得积分10
4秒前
5秒前
晏小敏完成签到,获得积分10
5秒前
爆米花应助风中寄云采纳,获得10
6秒前
屹舟发布了新的文献求助10
6秒前
Dou完成签到,获得积分10
6秒前
白泯完成签到,获得积分10
7秒前
1ssd发布了新的文献求助10
7秒前
667发布了新的文献求助10
7秒前
小二郎应助辰柒采纳,获得10
8秒前
9秒前
9秒前
clear完成签到,获得积分20
9秒前
9秒前
orixero应助congguitar采纳,获得10
9秒前
Evan完成签到,获得积分10
9秒前
YANG发布了新的文献求助10
10秒前
10秒前
123发布了新的文献求助10
10秒前
sunzhiyu233发布了新的文献求助10
11秒前
Raul完成签到 ,获得积分10
11秒前
11秒前
伯尔尼圆白菜完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759