亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Using gradient boosting with stability selection on health insurance claims data to identify disease trajectories in chronic obstructive pulmonary disease

医学 疾病 肺病 Boosting(机器学习) 医学诊断 背景(考古学) 重症监护医学 内科学 计算机科学 机器学习 病理 生物 古生物学
作者
Tina Ploner,Steffen Heß,Marcus Grum,Philipp Drewe-Boß,Jochen Walker
出处
期刊:Statistical Methods in Medical Research [SAGE Publishing]
卷期号:29 (12): 3684-3694 被引量:9
标识
DOI:10.1177/0962280220938088
摘要

Objective We propose a data-driven method to detect temporal patterns of disease progression in high-dimensional claims data based on gradient boosting with stability selection. Materials and methods We identified patients with chronic obstructive pulmonary disease in a German health insurance claims database with 6.5 million individuals and divided them into a group of patients with the highest disease severity and a group of control patients with lower severity. We then used gradient boosting with stability selection to determine variables correlating with a chronic obstructive pulmonary disease diagnosis of highest severity and subsequently model the temporal progression of the disease using the selected variables. Results We identified a network of 20 diagnoses (e.g. respiratory failure), medications (e.g. anticholinergic drugs) and procedures associated with a subsequent chronic obstructive pulmonary disease diagnosis of highest severity. Furthermore, the network successfully captured temporal patterns, such as disease progressions from lower to higher severity grades. Discussion The temporal trajectories identified by our data-driven approach are compatible with existing knowledge about chronic obstructive pulmonary disease showing that the method can reliably select relevant variables in a high-dimensional context. Conclusion We provide a generalizable approach for the automatic detection of disease trajectories in claims data. This could help to diagnose diseases early, identify unknown risk factors and optimize treatment plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
Shicheng完成签到,获得积分10
8秒前
皮皮完成签到 ,获得积分10
10秒前
20秒前
量子星尘发布了新的文献求助10
22秒前
24秒前
27秒前
sorawing发布了新的文献求助10
28秒前
31秒前
31秒前
JW2071367发布了新的文献求助10
32秒前
FashionBoy应助JW2071367采纳,获得10
48秒前
57秒前
57秒前
2212738190发布了新的文献求助10
1分钟前
1分钟前
2212738190完成签到,获得积分10
1分钟前
1分钟前
江佳颖发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
幽默的老师完成签到,获得积分20
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
伊力扎提发布了新的文献求助10
1分钟前
滑稽剑客发布了新的文献求助10
1分钟前
研友_nPkl9L发布了新的文献求助10
1分钟前
LMW应助吕小布12采纳,获得10
1分钟前
滑稽剑客完成签到,获得积分10
1分钟前
1分钟前
kevin完成签到,获得积分10
1分钟前
yansie完成签到,获得积分10
1分钟前
JamesPei应助伯云采纳,获得10
1分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4594943
求助须知:如何正确求助?哪些是违规求助? 4007539
关于积分的说明 12408171
捐赠科研通 3685962
什么是DOI,文献DOI怎么找? 2031572
邀请新用户注册赠送积分活动 1064815
科研通“疑难数据库(出版商)”最低求助积分说明 950145