Modeling Secondary Students’ Genetics Learning in a Game-Based Environment: Integrating the Expectancy-Value Theory of Achievement Motivation and Flow Theory

心理学 数学教育 感觉 结果(博弈论) 科学教育 价值(数学) 教育社会学 社会心理学 期望理论 教育学 计算机科学 数学 机器学习 数理经济学
作者
Arif Rachmatullah,Frieda Reichsman,Trudi Lord,Chad Dorsey,Bradford Mott,James C. Lester,Eric Wiebe
出处
期刊:Journal of Science Education and Technology [Springer Nature]
卷期号:30 (4): 511-528 被引量:19
标识
DOI:10.1007/s10956-020-09896-8
摘要

This study examined students’ genetics learning in a game-based environment by exploring the connections between the expectancy-value theory of achievement motivation and flow theory. A total of 394 secondary school students were recruited and learned genetics concepts through interacting with a game-based learning environment. We measured their science self-efficacy, science outcome-expectancy beliefs, flow experience, feelings of frustration, and conceptual understanding before and after playing the game, as well as their game satisfaction. Mixed-model ANOVA, correlation tests, and path analysis were run to answer our research questions. Based on the results, we found that the game had a significant impact on students’ conceptual understanding of genetics. We also found an acceptable statistical model of the integration between the two theories. Flow experience and in-game performance significantly impacted students’ posttest scores. Moreover, science outcome-expectancy belief was found to be a significant predictor of students’ flow experiences. In contrast, science self-efficacy and pretest scores were found to be the most significant factors influencing the feeling of frustration during the game. The results have practical implications with regard to the positive role that an adaptive game-based genetics learning environment might play in the science classroom. Findings also underscore the role the teacher should play in establishing productive outcome expectations for students prior to and during gameplay.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
苽峰发布了新的文献求助10
刚刚
刚刚
yangpeipei发布了新的文献求助10
1秒前
Owen应助小飞飞采纳,获得10
1秒前
1秒前
1秒前
Hello应助老乡开下门吧采纳,获得10
1秒前
李健应助芋泥啵啵采纳,获得10
1秒前
贰鸟应助acarbose采纳,获得10
2秒前
2秒前
平安喜乐完成签到,获得积分10
2秒前
汉堡包应助广州东站采纳,获得10
2秒前
2秒前
英姑应助莫大采纳,获得10
3秒前
Kiki发布了新的文献求助10
3秒前
蓝果果完成签到,获得积分20
3秒前
3秒前
running发布了新的文献求助10
3秒前
4秒前
vv发布了新的文献求助10
4秒前
生动千风发布了新的文献求助10
4秒前
落后破茧发布了新的文献求助10
5秒前
SYL发布了新的文献求助10
6秒前
6秒前
汪峰发布了新的文献求助10
6秒前
qinzouzou完成签到,获得积分20
6秒前
木南发布了新的文献求助10
6秒前
6秒前
小马甲应助加依娜采纳,获得10
7秒前
yx完成签到 ,获得积分20
7秒前
充电宝应助玉米采纳,获得30
7秒前
蓝果果发布了新的文献求助10
7秒前
7秒前
8秒前
LAST发布了新的文献求助10
8秒前
8秒前
8秒前
Hello应助高兴的又菡采纳,获得10
8秒前
秋子发布了新的文献求助10
9秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3473983
求助须知:如何正确求助?哪些是违规求助? 3066333
关于积分的说明 9098686
捐赠科研通 2757569
什么是DOI,文献DOI怎么找? 1513039
邀请新用户注册赠送积分活动 699314
科研通“疑难数据库(出版商)”最低求助积分说明 698909