脱氢
氮化硼
催化作用
丙烷
选择性
氧化物
化学工程
硼
丙烯
多相催化
无机化学
化学
有机化学
工程类
作者
Rajesh Belgamwar,Andrew G. M. Rankin,Ayan Maity,Amit Kumar Mishra,Jennifer S. Gómez,Julien Trébosc,C. P. Vinod,Olivier Lafon,Vivek Polshettiwar
出处
期刊:ACS Sustainable Chemistry & Engineering
[American Chemical Society]
日期:2020-10-20
卷期号:8 (43): 16124-16135
被引量:23
标识
DOI:10.1021/acssuschemeng.0c04148
摘要
In this work, we were able to significantly increase the activity of boron nitride (BN) catalysts used for the oxidative dehydrogenation (ODH) of propane by designing and synthesizing BN supported on dendritic fibrous nanosilica (DFNS). DFNS/BN showed a markedly increased catalytic efficiency, accompanied by exceptional stability and selectivity. Textural characterization, together with solid-state nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopic analyses, indicates the presence of a combination of unique fibrous morphology of DFNS and various boron sites connected to silica to be the reason for this increase in the catalytic performance. Notably, DFNS/B2O3 also showed catalytic activity, although with more moderate selectivity compared to that of DFNS/BN. Solid-state NMR spectra indicate that the higher selectivity of DFNS/BN might stem from a larger amount of hydrogen-bonded hydroxyl groups attached to B atoms. This study indicates that both boron nitride and oxide are active catalysts and by using high surface area support (DFNS), conversion from propane to propene as well as productivity of olefins was significantly increased.
科研通智能强力驱动
Strongly Powered by AbleSci AI