Improved Whale Optimization Algorithm Based on Nonlinear Adaptive Weight and Golden Sine Operator

鲸鱼 算法 计算机科学 非线性系统 操作员(生物学) 正弦 数学 物理 生物化学 量子力学 转录因子 生物 基因 抑制因子 化学 渔业 几何学
作者
Jianhua Zhang,Jie-Sheng Wang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 77013-77048 被引量:75
标识
DOI:10.1109/access.2020.2989445
摘要

Whale optimization algorithm (WOA) is a swarm intelligence-based algorithm that simulates whale population predation in the sea. Aiming at the shortcomings of WOA such as low precision and slow convergence speed, an improved whale optimization algorithm based on nonlinear adaptive weight and golden sine operator (NGS-WOA) was proposed. NGS-WOA first introduced a non-linear adaptive weigh so that search agents can adaptively explore the search space, and balance the development and exploration stages. Secondly, the improved golden sine operator is incorporated into the WOA. Due to the special relationship between the sine function and the unit circle, traversing the sine function is equivalent to scanning the unit circle. The search agent performs an efficient search with a sine route so as to improve the convergence speed and global exploration capability of the algorithm. At the same time, the addition of the golden section coefficient allows search agents to exploit with a fixed shrink step. The search agent can develop to areas with excellent results, which improves the optimization accuracy and local exploitation ability of the algorithm. In the simulation experiments, the gold sine algorithm (GoldSA), whale optimization algorithm (WOA), particle swarm optimization (PSO) algorithm, firefly algorithm (FA), fireworks algorithm (FWA), sine cosine algorithm (SCA) and NGS-WOA were selected for comparison experiments. Then, the effectiveness of the proposed improved strategies is verified. Finally, the improved WOA is applied to high-dimensional optimization and engineering optimization problems. The experimental results show that the improved strategy can effectively improve the performance of the algorithm, so that NGS-WOA has the advantages of high global convergence and avoiding falling into local optimal values.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jayliu发布了新的文献求助10
刚刚
Hello应助S77采纳,获得10
1秒前
12彡完成签到 ,获得积分10
1秒前
JamesPei应助kang采纳,获得10
2秒前
乐乐应助笨笨小懒虫采纳,获得10
2秒前
JamesPei应助聪慧雪糕采纳,获得10
3秒前
3秒前
ploto发布了新的文献求助10
4秒前
4秒前
wanci发布了新的文献求助10
4秒前
potato0mud完成签到 ,获得积分10
6秒前
freya完成签到,获得积分10
7秒前
7秒前
HAHA完成签到,获得积分10
7秒前
科研通AI5应助毛慢慢采纳,获得30
8秒前
8秒前
8秒前
8秒前
DK发布了新的文献求助10
8秒前
李东东完成签到 ,获得积分10
10秒前
快乐依云完成签到,获得积分10
10秒前
司辰发布了新的文献求助10
11秒前
12秒前
千筹发布了新的文献求助10
12秒前
12秒前
NexusExplorer应助halabouqii采纳,获得10
13秒前
蓝胖子发布了新的文献求助10
13秒前
沐柒发布了新的文献求助10
13秒前
wlm发布了新的文献求助10
14秒前
聪慧雪糕发布了新的文献求助10
14秒前
15秒前
16秒前
16秒前
科研小民工应助蜉蝣采纳,获得30
16秒前
小二郎应助DK采纳,获得10
16秒前
znn关注了科研通微信公众号
16秒前
二丫完成签到,获得积分10
17秒前
17秒前
18秒前
小助举报ape求助涉嫌违规
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Typology of Conditional Constructions 500
Facharztprüfung Kardiologie 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3586991
求助须知:如何正确求助?哪些是违规求助? 3155653
关于积分的说明 9507701
捐赠科研通 2858375
什么是DOI,文献DOI怎么找? 1570892
邀请新用户注册赠送积分活动 736651
科研通“疑难数据库(出版商)”最低求助积分说明 721730