Effect of Crystalline Structure on the Catalytic Hydrolysis of Cellulose in Subcritical Water

解聚 纤维素 水解 催化作用 化学工程 结晶度 化学 糖苷键 反应速率常数 聚合度 活化能 反应速率 高分子化学 聚合 有机化学 动力学 聚合物 结晶学 量子力学 工程类 物理
作者
Yue Liu,Hongqiao Fu,Wei Zhang,Haichao Liu
出处
期刊:ACS Sustainable Chemistry & Engineering [American Chemical Society]
卷期号:10 (18): 5859-5866 被引量:22
标识
DOI:10.1021/acssuschemeng.1c08703
摘要

Depolymerization of cellulose, the most abundant biomass in nature, is a critical step for its catalytic conversion to fuels and chemicals. While cleavage of its glycosidic bond by acid hydrolysis is the rate-determining step to depolymerize cellulose, disrupting its robust crystalline structure is equally important. In this work, we examined the hydrolysis of cellulose of four different crystalline allomorphs, i.e., I, II, III, and IV, with respect to the conversion rate, change in the crystalline structure, and the degree of crystallinity and polymerization during the reaction. Independent of their crystalline structure, the four cellulose samples converted following the first-order reaction kinetics with no essential influence on the product selectivity. However, the rate constants were largely different and decreased in the following sequence: cellulose II > III > I > IV. The high rate of cellulose II is caused by its higher reaction probability, as reflected by its preexponential factor, which is several orders of magnitude higher than that for the other cellulose samples, which overcompensated its high apparent activation energy. It is found that cellulose I and IV undergo surface reactions at 478–508 K, whereas cellulose II and III swell at the reaction temperatures, which allows the hydrolysis reaction to occur in the whole swollen regions, leading to higher accessibility of the glycosidic bond to the H+ catalyst and consequently higher conversion rates. These findings provide the mechanistic basis for an alternative strategy to enhance the efficacy in depolymerization of cellulose via tuning of crystalline phases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
88完成签到,获得积分10
刚刚
我是站长才怪应助谭谨川采纳,获得10
刚刚
1233发布了新的文献求助10
1秒前
bismarck7完成签到,获得积分10
1秒前
1秒前
1秒前
田様应助淡淡采白采纳,获得10
1秒前
赖道之发布了新的文献求助10
2秒前
calbee完成签到,获得积分10
2秒前
2秒前
和谐白云完成签到,获得积分10
3秒前
3秒前
3秒前
王w发布了新的文献求助10
4秒前
yyyyy完成签到,获得积分10
5秒前
5秒前
大侠发布了新的文献求助10
5秒前
魁梧的乐天完成签到,获得积分20
5秒前
冯度翩翩完成签到,获得积分10
6秒前
科研通AI2S应助satchzhao采纳,获得10
6秒前
jijizz完成签到,获得积分10
7秒前
一一发布了新的文献求助10
7秒前
小马甲应助ChiDaiOLD采纳,获得10
7秒前
7秒前
鳗鱼灵寒发布了新的文献求助10
8秒前
shatang发布了新的文献求助10
8秒前
lesyeuxdexx完成签到 ,获得积分10
10秒前
11秒前
程琳完成签到,获得积分20
12秒前
13秒前
卓哥发布了新的文献求助10
13秒前
科研通AI5应助sansan采纳,获得10
14秒前
14秒前
14秒前
脑洞疼应助杰森斯坦虎采纳,获得10
14秒前
16秒前
17秒前
研友_QQC完成签到,获得积分10
17秒前
NeuroWhite完成签到,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808