Machine Learning Based on MRI DWI Radiomics Features for Prognostic Prediction in Nasopharyngeal Carcinoma

鼻咽癌 医学 无线电技术 有效扩散系数 磁共振成像 磁共振弥散成像 核医学 放射科 随机森林 人工智能 机器学习 计算机科学 放射治疗
作者
Qiyi Hu,Guojie Wang,Xiao-Yi Song,Jingjing Wan,Man Li,Fan Zhang,Qingling Chen,Xiaoling Cao,Shaolin Li,Ying Wang
出处
期刊:Cancers [Multidisciplinary Digital Publishing Institute]
卷期号:14 (13): 3201-3201 被引量:2
标识
DOI:10.3390/cancers14133201
摘要

Purpose: This study aimed to explore the predictive efficacy of radiomics analyses based on readout-segmented echo-planar diffusion-weighted imaging (RESOLVE-DWI) for prognosis evaluation in nasopharyngeal carcinoma in order to provide further information for clinical decision making and intervention. Methods: A total of 154 patients with untreated NPC confirmed by pathological examination were enrolled, and the pretreatment magnetic resonance image (MRI)—including diffusion-weighted imaging (DWI), apparent diffusion coefficient (ADC) maps, T2-weighted imaging (T2WI), and contrast-enhanced T1-weighted imaging (CE-T1WI)—was collected. The Random Forest (RF) algorithm selected radiomics features and established the machine-learning models. Five models, namely model 1 (DWI + ADC), model 2 (T2WI + CE-T1WI), model 3 (DWI + ADC + T2WI), model 4 (DWI + ADC + CE-T1WI), and model 5 (DWI + ADC + T2WI + CE-T1WI), were constructed. The average area under the curve (AUC) of the validation set was determined in order to compare the predictive efficacy for prognosis evaluation. Results: After adjusting the parameters, the RF machine learning models based on extracted imaging features from different sequence combinations were obtained. The invalidation sets of model 1 (DWI + ADC) yielded the highest average AUC of 0.80 (95% CI: 0.79–0.81). The average AUCs of the model 2, 3, 4, and 5 invalidation sets were 0.72 (95% CI: 0.71–0.74), 0.66 (95% CI: 0.64–0.68), 0.74 (95% CI: 0.73–0.75), and 0.75 (95% CI: 0.74–0.76), respectively. Conclusion: A radiomics model derived from the MRI DWI of patients with nasopharyngeal carcinoma was generated in order to evaluate the risk of recurrence and metastasis. The model based on MRI DWI can provide an alternative approach for survival estimation, and can reveal more information for clinical decision-making and intervention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助kane采纳,获得10
1秒前
Emper发布了新的文献求助10
1秒前
1秒前
1秒前
Sicie完成签到,获得积分10
3秒前
3秒前
希望天下0贩的0应助justin采纳,获得10
4秒前
轻松土豆完成签到,获得积分10
4秒前
hrbbdhr应助Ann采纳,获得20
4秒前
李金文发布了新的文献求助10
4秒前
眯眯眼的世界完成签到,获得积分10
4秒前
贾明灵发布了新的文献求助10
5秒前
5秒前
清爽白开水完成签到 ,获得积分10
6秒前
丁莞发布了新的文献求助10
6秒前
Mmmmarys完成签到,获得积分10
7秒前
土豪的严青完成签到,获得积分10
7秒前
淡淡夜梦关注了科研通微信公众号
8秒前
单薄语山发布了新的文献求助10
9秒前
浮游应助小田儿采纳,获得10
9秒前
ttm发布了新的文献求助10
9秒前
9秒前
NexusExplorer应助动听的半莲采纳,获得10
11秒前
万能图书馆应助哈哈采纳,获得10
12秒前
12秒前
肝不动的牛马完成签到,获得积分10
14秒前
Ilan发布了新的文献求助10
15秒前
花酒发布了新的文献求助10
15秒前
16秒前
小马甲应助xin采纳,获得10
17秒前
17秒前
17秒前
高贵的馒头完成签到,获得积分10
18秒前
不舍天真完成签到,获得积分10
18秒前
wentong完成签到,获得积分10
18秒前
星河清梦发布了新的文献求助30
21秒前
情怀应助zy采纳,获得10
21秒前
22秒前
22秒前
22秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5218912
求助须知:如何正确求助?哪些是违规求助? 4392767
关于积分的说明 13677175
捐赠科研通 4255477
什么是DOI,文献DOI怎么找? 2334980
邀请新用户注册赠送积分活动 1332572
关于科研通互助平台的介绍 1286834