重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Machine Learning Based on MRI DWI Radiomics Features for Prognostic Prediction in Nasopharyngeal Carcinoma

鼻咽癌 医学 无线电技术 有效扩散系数 磁共振成像 磁共振弥散成像 核医学 放射科 随机森林 人工智能 机器学习 计算机科学 放射治疗
作者
Qiyi Hu,Guojie Wang,Xiao-Yi Song,Jingjing Wan,Man Li,Fan Zhang,Qingling Chen,Xiaoling Cao,Shaolin Li,Ying Wang
出处
期刊:Cancers [MDPI AG]
卷期号:14 (13): 3201-3201 被引量:2
标识
DOI:10.3390/cancers14133201
摘要

Purpose: This study aimed to explore the predictive efficacy of radiomics analyses based on readout-segmented echo-planar diffusion-weighted imaging (RESOLVE-DWI) for prognosis evaluation in nasopharyngeal carcinoma in order to provide further information for clinical decision making and intervention. Methods: A total of 154 patients with untreated NPC confirmed by pathological examination were enrolled, and the pretreatment magnetic resonance image (MRI)—including diffusion-weighted imaging (DWI), apparent diffusion coefficient (ADC) maps, T2-weighted imaging (T2WI), and contrast-enhanced T1-weighted imaging (CE-T1WI)—was collected. The Random Forest (RF) algorithm selected radiomics features and established the machine-learning models. Five models, namely model 1 (DWI + ADC), model 2 (T2WI + CE-T1WI), model 3 (DWI + ADC + T2WI), model 4 (DWI + ADC + CE-T1WI), and model 5 (DWI + ADC + T2WI + CE-T1WI), were constructed. The average area under the curve (AUC) of the validation set was determined in order to compare the predictive efficacy for prognosis evaluation. Results: After adjusting the parameters, the RF machine learning models based on extracted imaging features from different sequence combinations were obtained. The invalidation sets of model 1 (DWI + ADC) yielded the highest average AUC of 0.80 (95% CI: 0.79–0.81). The average AUCs of the model 2, 3, 4, and 5 invalidation sets were 0.72 (95% CI: 0.71–0.74), 0.66 (95% CI: 0.64–0.68), 0.74 (95% CI: 0.73–0.75), and 0.75 (95% CI: 0.74–0.76), respectively. Conclusion: A radiomics model derived from the MRI DWI of patients with nasopharyngeal carcinoma was generated in order to evaluate the risk of recurrence and metastasis. The model based on MRI DWI can provide an alternative approach for survival estimation, and can reveal more information for clinical decision-making and intervention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Letter发布了新的文献求助10
刚刚
刚刚
隐形曼青应助DrYang采纳,获得10
1秒前
nian发布了新的文献求助10
1秒前
1秒前
月落完成签到,获得积分10
1秒前
万能图书馆应助jeff采纳,获得10
1秒前
2秒前
伯颜丽完成签到,获得积分20
2秒前
在水一方应助优雅冬灵采纳,获得10
2秒前
东郭乾发布了新的文献求助20
2秒前
李冬卿完成签到,获得积分10
2秒前
英姑应助俭朴乐驹采纳,获得10
2秒前
3秒前
3秒前
3秒前
共享精神应助Gaojin锦采纳,获得10
3秒前
4秒前
fengxin991008发布了新的文献求助10
4秒前
XG发布了新的文献求助10
4秒前
5秒前
5秒前
打打应助含糊的紫文采纳,获得10
5秒前
6秒前
6秒前
三杯虾发布了新的文献求助30
6秒前
科研通AI2S应助活力的元龙采纳,获得10
6秒前
小蘑菇应助bluer采纳,获得10
6秒前
11完成签到,获得积分10
6秒前
木木发布了新的文献求助10
6秒前
6秒前
XiaoY发布了新的文献求助30
6秒前
6秒前
现实的断缘完成签到,获得积分10
7秒前
负责身影发布了新的文献求助10
7秒前
大模型应助叶叶叶采纳,获得10
7秒前
丁仪发布了新的文献求助10
7秒前
苏乘风发布了新的文献求助10
8秒前
流年发布了新的文献求助10
8秒前
科研通AI6应助梵强斯采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466870
求助须知:如何正确求助?哪些是违规求助? 4570586
关于积分的说明 14326244
捐赠科研通 4497151
什么是DOI,文献DOI怎么找? 2463752
邀请新用户注册赠送积分活动 1452682
关于科研通互助平台的介绍 1427605