[Core prescriptions in treatment of edema by traditional Chinese medicine masters and mechanism prediction].

中医药 小桶 传统医学 根(腹足类) 药方 医学 药物数据库 药理学 生物 基因 基因表达 植物 药品 替代医学 基因本体论 生物化学 病理
作者
Xiang-fei Meng,Fengrong Zhang,Bo Wang,Shihuan Tang
出处
期刊:PubMed 卷期号:47 (3): 764-775
标识
DOI:10.19540/j.cnki.cjcmm.20211103.701
摘要

The core prescriptions and formulation characteristics in the treatment of edema by traditional Chinese medicine(TCM) masters were analyzed through data mining and their mechanisms were explored by network pharmacology. We collected journal reports on the treatment of edema by TCM masters in three sessions from China National Knowledge Infrastructure(CNKI) and constructed a database by Traditional Chinese Medicine Inheritance Support System 3.0. The prescriptions in the case studies were analyzed by association rules and k-means clustering. The chemical components and targets of Chinese medicines in core prescriptions were collected through TCMSP and TCMID. Edema-related targets were collected from DrugBank and GeneCards. The protein-protein interaction(PPI) network was constructed by STRING and the core targets were screened out. FunRich 3.1.3 was used to enrich the expression sites of core prescriptions. Metascape was used to perform Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis of intersection targets. Cytoscape 3.6.0 was used to visualize the "Chinese medicine-active ingredient-core target-pathway" network. The results showed that 315 pieces of medical records in the treatment of edema by TCM masters were obtained and five core prescriptions were analyzed by association rules and k-means clustering. Core prescription 1 contained Poria, Atractylodis Macrocephalae Rhizoma, Astragali Radix, Alismatis Rhizoma, Glycyrrhizae Radix et Rhizoma, and Codonopsis Radix, involving 166 chemical components and 1 125 targets. Core prescription 2 contained Astragali Radix, Salviae Miltiorrhizae Radix et Rhizoma, Poria, Chuanxiong Rhizoma, Paeoniae Radix Rubra, and Angelicae Sinensis Radix, involving 138 chemical components and 1 112 targets. Core prescription 3 contained Poria, Salviae Miltiorrhizae Radix et Rhizoma, Astragali Radix, Atractylodis Macrocephalae Rhizoma, Alismatis Rhizoma, and Coicis Semen, involving 126 chemical components and 1 121 targets. Core prescription 4 contained Poria, Forsythiae Fructus, Atractylodis Macrocephalae Rhizoma, Imperatae Rhizoma, Cicadae Periostracum, and Coicis Semen, involving 58 chemical components and 820 targets. Core prescription 5 contained Poria, Atractylodis Macrocephalae Rhizoma, Astragali Radix, Alismatis Rhizoma, Trionycis Carapax, and Dioscoreae Rhizoma, involving 68 chemical components and 919 targets. The core targets of core prescriptions included AKT1, ALB, CASP3, MAPK3, EGFR, SRC, MAPK1, and TNF. The potential targets of core prescriptions in the treatment were highly expressed in the stomach, bladder, lung, and kidney. KEGG pathways were enriched in inflammation and cell cycle pathways, especially the inflammation-relation pathways. The therapeutic effect of core prescriptions on edema is presumedly achieved by tonifying the spleen, draining water, activating blood, and benefiting Qi to resist inflammation and regulate the immune system. This study is expected to provide references for the summary of TCM masters' experience and new drug development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
biubiu完成签到,获得积分10
刚刚
李龙玮发布了新的文献求助10
2秒前
谨慎从露发布了新的文献求助10
2秒前
研友_LJQXK8完成签到,获得积分10
3秒前
丰知然应助77采纳,获得10
3秒前
深情安青应助77采纳,获得10
3秒前
Bi8bo发布了新的文献求助10
3秒前
科研通AI2S应助echoMe采纳,获得10
4秒前
哈哈哈哈发布了新的文献求助10
4秒前
执着谷梦完成签到,获得积分10
4秒前
4秒前
bkagyin应助俏皮妙海采纳,获得10
5秒前
科研通AI2S应助典雅的俊驰采纳,获得10
5秒前
7秒前
从容芮应助甲基醚采纳,获得10
7秒前
jnoker应助琉璃采纳,获得10
7秒前
8秒前
9秒前
圈圈黄完成签到,获得积分10
9秒前
小蘑菇应助揽星色采纳,获得30
10秒前
羽翼完成签到,获得积分20
11秒前
12秒前
ayayaya完成签到 ,获得积分10
12秒前
13秒前
13秒前
RUINNNO发布了新的文献求助10
14秒前
葳蕤苍生完成签到,获得积分10
14秒前
万能图书馆应助zzh采纳,获得10
14秒前
小暮漓完成签到,获得积分10
14秒前
jnoker应助执着谷梦采纳,获得10
17秒前
18秒前
脑洞疼应助星星采纳,获得10
18秒前
19秒前
SciGPT应助单纯的爆米花采纳,获得10
22秒前
23秒前
25秒前
25秒前
26秒前
百里青青完成签到,获得积分10
26秒前
26秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312474
求助须知:如何正确求助?哪些是违规求助? 2945127
关于积分的说明 8523062
捐赠科研通 2620847
什么是DOI,文献DOI怎么找? 1433151
科研通“疑难数据库(出版商)”最低求助积分说明 664881
邀请新用户注册赠送积分活动 650255