Uniquely Designed Tungsten Oxide Nanopetal Decorated Electropsun PAN Nanofiber for a Flexible Supercapacitor with Ultrahigh Rate Capability and Cyclability

电容 超级电容器 材料科学 聚丙烯腈 纳米纤维 电极 功率密度 水平扫描速率 氧化物 化学工程 纳米技术 复合材料 循环伏安法 电化学 冶金 功率(物理) 聚合物 化学 工程类 物理化学 物理 量子力学
作者
Vaishali Tanwar,Rasmita Barik,Pravin P. Ingole
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:5 (2): 1767-1780 被引量:10
标识
DOI:10.1021/acsaem.1c03210
摘要

A supercapacitor electrode material with unique morphology, i.e., tungsten oxide nanopetal decorated electrospun polyacrylonitrile (PAN) nanofibers, was synthesized. In this study, a polymeric solution of PAN was electrospun to form uniform high aspect ratio cross-linked nanofibers with diameter ∼400–500 nm that were further decorated with tungsten oxide nanopetals with a particle size around 30–40 nm through a hydrothermal treatment. The supercapacitor device fabricated using the as-synthesized material (W-PAN) coated carbon cloth as the working electrode exhibited a very high specific capacitance of 1107 F g–1 at a scan rate of 1 mV s–1. It was capable of performing with 100% capacitance retention at least up to 1000 cycles at a very high current density of 40 A g–1, suggesting ultrahigh rate capability and cyclability of the crafted electrode. Moreover, the charge storage mechanism was investigated which provided intriguing insights about the capacity contribution from tungsten oxide and PAN fibers to the overall capacitance. The W-PAN sample was capable of delivering a maximum energy density (Ed) of 33.33 W h kg–1 at a power density (Pd) of 2317 W kg–1 in half-cell configuration. The symmetric device fabricated using the composites, besides possessing an optimal voltage of 1.1 V, was also capable of delivering an energy density value of 641.66 mW h kg–1 at a power density of 16.47 W kg–1. The device also exhibits excellent cycle stability with a capacitance retention of 100% even after 2000 cycles. The physiochemical characterizations imparted comprehensive insight toward the interaction between the functional moieties present on the PAN fibrous matrix with tungsten oxide.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助润润轩轩采纳,获得10
刚刚
刚刚
2秒前
和谐乌龟发布了新的文献求助10
2秒前
zZ完成签到,获得积分10
2秒前
科研小白完成签到,获得积分10
2秒前
LYY发布了新的文献求助10
3秒前
wangfu完成签到,获得积分10
3秒前
ding应助Dddd采纳,获得10
4秒前
yin发布了新的文献求助10
4秒前
大模型应助张张采纳,获得10
4秒前
Akim应助吾问无为谓采纳,获得10
5秒前
5秒前
神勇的冰姬完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
7秒前
8秒前
tony完成签到,获得积分10
8秒前
Uynaux发布了新的文献求助30
8秒前
SONG完成签到,获得积分10
8秒前
SYLH应助干秋白采纳,获得10
9秒前
9秒前
风雨1210发布了新的文献求助10
10秒前
文艺书雪完成签到 ,获得积分10
10秒前
独行侠完成签到,获得积分10
10秒前
11秒前
我测你码发布了新的文献求助10
11秒前
又要起名字完成签到,获得积分10
11秒前
11秒前
11秒前
damian完成签到,获得积分10
12秒前
LiShin发布了新的文献求助10
12秒前
渝州人应助凤凰山采纳,获得10
13秒前
sweetbearm应助凤凰山采纳,获得10
13秒前
我是老大应助科研通管家采纳,获得10
13秒前
大个应助科研通管家采纳,获得10
13秒前
yizhiGao应助科研通管家采纳,获得10
13秒前
华仔应助科研通管家采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794