Attention based long-term air temperature forecasting network: ALTF Net

计算机科学 循环神经网络 自回归积分移动平均 期限(时间) 深度学习 人工智能 背景(考古学) 自回归模型 人工神经网络 编码器 时间序列 机器学习 计量经济学 操作系统 物理 生物 古生物学 量子力学 经济
作者
Arpan Nandi,Arkadeep De,Arjun Mallick,Asif Iqbal Middya,Sarbani Roy
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:252: 109442-109442 被引量:7
标识
DOI:10.1016/j.knosys.2022.109442
摘要

Air temperature is one of the most important meteorological parameters related with atmospheric and environmental research. In this context, accurate prediction and forecasting of temperature is crucial due to the current global climate change. Although, the short term temperature forecasting have been more or less conquered in the past by using predictive algorithms, the long-term temperature forecasting is still a challenging task. Long term temperature forecasting is previously attempted by deep learning methods like Recurrent Neural Network (RNN), Long Short Term Memory (LSTM), etc. However, the gradient explosion and gradient vanishing problems of the RNN based networks were the major roadblock in the path of long-term prediction. So, in this paper, an attention-based model called ALTF Net (Attention based Long term Temperature Forecasting Network) approaches this problem using an Encoder–Decoder orientation. The Encoder encodes the relative dependencies of the auto-regressive time-series into an attention tensor which is used by the Decoder to produce the prediction. The Encoder is augmented to incorporate a convolution block to recognize the seasonal patterns. The proposed model ALTF uses a Transformer with an augmented encoder to predict temperature up to 150 days with high accuracy, a feat which would be difficult using RNN and LSTM. The model has been trained with 25+ years of data from 5 cities around the globe and the performance have been rigorously evaluated in terms of RMSE, MAE, R2, and correlation values. It is observed that the proposed model dominated over several baselines (ARIMA, RFR, KNN, MLP, RNN, CNN, LSTM, and Transformer) for long term temperature forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
子车茗应助轻松的鸿采纳,获得20
1秒前
qujue001完成签到,获得积分20
1秒前
隐形曼青应助YwYzzZ采纳,获得10
1秒前
kingkingmai发布了新的文献求助10
1秒前
苹果初雪发布了新的文献求助10
1秒前
linlin应助思量博千金采纳,获得10
2秒前
勇敢的心发布了新的文献求助10
2秒前
汉堡包应助Linda采纳,获得10
2秒前
小蘑菇应助wenxianxiazai123采纳,获得20
2秒前
wanci应助天大-小浩采纳,获得10
4秒前
4秒前
杨洁完成签到 ,获得积分10
4秒前
5秒前
酷波er应助Wayne采纳,获得10
6秒前
咖飞发布了新的文献求助10
7秒前
7秒前
喜喜完成签到,获得积分10
9秒前
9秒前
YU发布了新的文献求助10
10秒前
11秒前
12秒前
wenxianxiazai123完成签到,获得积分10
12秒前
12秒前
wsff完成签到,获得积分10
13秒前
慕青应助林珍采纳,获得30
13秒前
13秒前
zhou完成签到,获得积分10
13秒前
14秒前
大方大船完成签到,获得积分10
15秒前
15秒前
疯丫头发布了新的文献求助10
16秒前
希望天下0贩的0应助wsff采纳,获得10
17秒前
李健的小迷弟应助云_123采纳,获得10
17秒前
gb完成签到 ,获得积分10
17秒前
往往完成签到,获得积分10
17秒前
18秒前
深情安青应助你好采纳,获得10
18秒前
18秒前
天大-小浩发布了新的文献求助10
19秒前
阿文发布了新的文献求助10
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461806
求助须知:如何正确求助?哪些是违规求助? 3055500
关于积分的说明 9048149
捐赠科研通 2745215
什么是DOI,文献DOI怎么找? 1506088
科研通“疑难数据库(出版商)”最低求助积分说明 695974
邀请新用户注册赠送积分活动 695472