螺旋(铁路)
层流
湍流
机械
狭窄
流量(数学)
磁共振成像
医学
核磁共振
物理
放射科
数学
数学分析
作者
P A Stonebridge,Craig Buckley,Alan J. Thompson,J Dick,G. Hunter,John A. Chudek,Graeme Houston,J. J. F. Belch
出处
期刊:PubMed
日期:2004-09-01
卷期号:23 (3): 276-83
被引量:17
摘要
Physiological blood flow patterns are themselves poorly understood despite their impact on arterial disease. Stable spiral (helical) laminar flow (SLF) has been observed in normal subjects. The purpose of the present study is to develop a method of magnetic resonance (MR) flow pattern visualization and to analyze spiral and non-spiral flow patterns with and without luminal narrowing in vitro. The flow conditions were then modeled using computational fluid dynamics (Star-CD).Laminar integrity was examined in a flow-rig using spin and gradient echo magnetic resonance imaging (MRI) in non-stenosed and stenosed conduits in the presence of non-spiral and spiral flow.No difference was observed in a non-stenosed conduit between non-spiral and spiral flow. In the presence of a stenosis spiral flow preserves flow velocity coherence whereas non-spiral flow increasingly lost coherence beginning proximal to the stenosis. Computational fluid dynamic modeling of the in vitro experiment showed marked differences between the 2 flow patterns. Non-spiral flow produced greater inwardly directed forces just beyond the stenosis and greater outward pressures at more distal sites. The near wall turbulent energy was up to 700% less with spiral flow over non-spiral flow beyond the stenosis.Spiral flow appears to offer clear flow profile stabilizing advantages over non-spiral flow, by significantly reducing the turbulence caused by a stenosis. Spiral flow also produces lower forces acting on the vessel wall.
科研通智能强力驱动
Strongly Powered by AbleSci AI