Learning Generalisable Omni-Scale Representations for Person Re-Identification

计算机科学 判别式 人工智能 编码(集合论) 比例(比率) 特征学习 块(置换群论) 适应(眼睛) 鉴定(生物学) 域适应 特征工程 模式识别(心理学) 机器学习 特征(语言学) 深度学习 卷积神经网络 程序设计语言 集合(抽象数据类型) 光学 哲学 物理 几何学 分类器(UML) 生物 量子力学 植物 语言学 数学
作者
Kaiyang Zhou,Yongxin Yang,Andrea Cavallaro,Tao Xiang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:165
标识
DOI:10.1109/tpami.2021.3069237
摘要

An effective person re-identification (re-ID) model should learn feature representations that are both discriminative, for distinguishing similar-looking people, and generalisable, for deployment across datasets without any adaptation. In this paper, we develop novel CNN architectures to address both challenges. First, we present a re-ID CNN termed omni-scale network (OSNet) to learn features that not only capture different spatial scales but also encapsulate a synergistic combination of multiple scales, namely omni-scale features. The basic building block consists of multiple convolutional streams, each detecting features at a certain scale. For omni-scale feature learning, a unified aggregation gate is introduced to dynamically fuse multi-scale features with channel-wise weights. OSNet is lightweight as its building blocks comprise factorised convolutions. Second, to improve generalisable feature learning, we introduce instance normalisation (IN) layers into OSNet to cope with cross-dataset discrepancies. Further, to determine the optimal placements of these IN layers in the architecture, we formulate an efficient differentiable architecture search algorithm. Extensive experiments show that, in the conventional same-dataset setting, OSNet achieves state-of-the-art performance, despite being much smaller than existing re-ID models. In the more challenging yet practical cross-dataset setting, OSNet beats most recent unsupervised domain adaptation methods without using any target data. Our code and models are released at https://github.com/KaiyangZhou/deep-person-reid .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
大大完成签到,获得积分10
3秒前
3秒前
3秒前
Xiaoxiao应助greenPASS666采纳,获得10
3秒前
现代的秋白完成签到,获得积分10
3秒前
从容的盼晴完成签到,获得积分10
3秒前
scvrl完成签到,获得积分10
4秒前
4秒前
楼寒天发布了新的文献求助10
4秒前
请叫我风吹麦浪应助C2采纳,获得10
6秒前
xlj发布了新的文献求助10
6秒前
6秒前
迷路白桃完成签到,获得积分10
7秒前
kento发布了新的文献求助30
7秒前
眯眯眼的衬衫应助yKkkkkk采纳,获得10
7秒前
小豆包科研冲刺者完成签到,获得积分10
7秒前
黄饱饱完成签到,获得积分10
8秒前
8秒前
传奇3应助CO2采纳,获得10
9秒前
10秒前
称心乐枫完成签到,获得积分10
11秒前
11秒前
22发布了新的文献求助10
11秒前
berry发布了新的文献求助10
11秒前
kingmin应助毛慢慢采纳,获得10
12秒前
完美世界应助顺利鱼采纳,获得10
13秒前
搜集达人应助招财不肥采纳,获得10
14秒前
sweetbearm应助李秋静采纳,获得10
14秒前
Michael_li完成签到,获得积分10
14秒前
whs完成签到,获得积分10
16秒前
科研通AI5应助xlj采纳,获得10
17秒前
再干一杯发布了新的文献求助10
17秒前
18秒前
满意的天完成签到 ,获得积分10
18秒前
luoshiwen完成签到,获得积分10
18秒前
落寞的觅柔完成签到,获得积分10
20秒前
21秒前
LUNWENREQUEST发布了新的文献求助10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808