Prediction of early childhood obesity with machine learning and electronic health record data

电子健康档案 百分位 儿童肥胖 计算机科学 肥胖 队列 人工智能 医学 机器学习 统计 医疗保健 数学 超重 经济增长 内科学 经济
作者
Xueqin Pang,Christopher B. Forrest,Félice Lê‐Scherban,Aaron J. Masino
出处
期刊:International Journal of Medical Informatics [Elsevier BV]
卷期号:150: 104454-104454 被引量:66
标识
DOI:10.1016/j.ijmedinf.2021.104454
摘要

This study compares seven machine learning models developed to predict childhood obesity from age > 2 to ≤ 7 years using Electronic Healthcare Record (EHR) data up to age 2 years.EHR data from of 860,510 patients with 11,194,579 healthcare encounters were obtained from the Children's Hospital of Philadelphia. After applying stringent quality control to remove implausible growth values and including only individuals with all recommended wellness visits by age 7 years, 27,203 (50.78 % male) patients remained for model development. Seven machine learning models were developed to predict obesity incidence as defined by the Centers for Disease Control and Prevention (age/sex adjusted BMI>95th percentile). Model performance was evaluated by multiple standard classifier metrics and the differences among seven models were compared using the Cochran's Q test and post-hoc pairwise testing.XGBoost yielded 0.81 (0.001) AUC, which outperformed all other models. It also achieved statistically significant better performance than all other models on standard classifier metrics (sensitivity fixed at 80 %): precision 30.90 % (0.22 %), F1-socre 44.60 % (0.26 %), accuracy 66.14 % (0.41 %), and specificity 63.27 % (0.41 %).Early childhood obesity prediction models were developed from the largest cohort reported to date. Relative to prior research, our models generalize to include males and females in a single model and extend the time frame for obesity incidence prediction to 7 years of age. The presented machine learning model development workflow can be adapted to various EHR-based studies and may be valuable for developing other clinical prediction models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhuyuan发布了新的文献求助10
刚刚
瓜瓜程完成签到 ,获得积分10
刚刚
SYLH应助霹雳小柱采纳,获得10
刚刚
由怜雪发布了新的文献求助10
刚刚
hearan发布了新的文献求助10
刚刚
man发布了新的文献求助10
刚刚
义气凝阳完成签到,获得积分10
1秒前
博修发布了新的文献求助10
1秒前
2秒前
hzwyyds应助yshj采纳,获得10
2秒前
2秒前
2秒前
utgu完成签到,获得积分10
3秒前
lin发布了新的文献求助10
3秒前
pluto应助王永涛采纳,获得10
3秒前
寒冬完成签到,获得积分10
3秒前
4秒前
4秒前
有一天发布了新的文献求助50
4秒前
5秒前
Gmhoo_发布了新的文献求助10
5秒前
让我康康完成签到 ,获得积分10
6秒前
端庄谷南完成签到 ,获得积分10
6秒前
xm发布了新的文献求助10
6秒前
wh雨发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
华仔应助maozhehai29999采纳,获得10
8秒前
此时此刻完成签到,获得积分10
9秒前
9秒前
zz发布了新的文献求助10
9秒前
经验丰富的菜狗完成签到,获得积分10
11秒前
曹博完成签到,获得积分10
12秒前
Docsiwen完成签到 ,获得积分10
12秒前
13秒前
山色青完成签到,获得积分10
13秒前
ZD发布了新的文献求助10
13秒前
hearan完成签到,获得积分10
13秒前
先一完成签到 ,获得积分10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950900
求助须知:如何正确求助?哪些是违规求助? 3496263
关于积分的说明 11081235
捐赠科研通 3226738
什么是DOI,文献DOI怎么找? 1783955
邀请新用户注册赠送积分活动 867992
科研通“疑难数据库(出版商)”最低求助积分说明 800993