Prediction of early childhood obesity with machine learning and electronic health record data

电子健康档案 百分位 儿童肥胖 计算机科学 肥胖 队列 人工智能 医学 机器学习 统计 医疗保健 数学 超重 内科学 经济 经济增长
作者
Xueqin Pang,Christopher B. Forrest,Félice Lê‐Scherban,Aaron J. Masino
出处
期刊:International Journal of Medical Informatics [Elsevier BV]
卷期号:150: 104454-104454 被引量:66
标识
DOI:10.1016/j.ijmedinf.2021.104454
摘要

This study compares seven machine learning models developed to predict childhood obesity from age > 2 to ≤ 7 years using Electronic Healthcare Record (EHR) data up to age 2 years.EHR data from of 860,510 patients with 11,194,579 healthcare encounters were obtained from the Children's Hospital of Philadelphia. After applying stringent quality control to remove implausible growth values and including only individuals with all recommended wellness visits by age 7 years, 27,203 (50.78 % male) patients remained for model development. Seven machine learning models were developed to predict obesity incidence as defined by the Centers for Disease Control and Prevention (age/sex adjusted BMI>95th percentile). Model performance was evaluated by multiple standard classifier metrics and the differences among seven models were compared using the Cochran's Q test and post-hoc pairwise testing.XGBoost yielded 0.81 (0.001) AUC, which outperformed all other models. It also achieved statistically significant better performance than all other models on standard classifier metrics (sensitivity fixed at 80 %): precision 30.90 % (0.22 %), F1-socre 44.60 % (0.26 %), accuracy 66.14 % (0.41 %), and specificity 63.27 % (0.41 %).Early childhood obesity prediction models were developed from the largest cohort reported to date. Relative to prior research, our models generalize to include males and females in a single model and extend the time frame for obesity incidence prediction to 7 years of age. The presented machine learning model development workflow can be adapted to various EHR-based studies and may be valuable for developing other clinical prediction models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
深情安青应助顺心成仁采纳,获得10
1秒前
1秒前
兔子发布了新的文献求助10
1秒前
mimimi发布了新的文献求助10
1秒前
脑洞疼应助流年末逝采纳,获得10
1秒前
城北徐公发布了新的文献求助50
2秒前
大模型应助尔多龙采纳,获得10
2秒前
光催完成签到,获得积分10
2秒前
3秒前
调皮的海之完成签到,获得积分10
3秒前
浮游应助谷粱紫槐采纳,获得10
3秒前
异乡人完成签到,获得积分10
3秒前
Boffican发布了新的文献求助10
4秒前
zhonglv7应助勤奋谷梦采纳,获得10
4秒前
悦耳的三毒完成签到,获得积分10
4秒前
科研通AI6应助虾仁炒饭采纳,获得10
5秒前
科研小白发布了新的文献求助10
5秒前
漂亮半兰完成签到,获得积分10
5秒前
6秒前
刻苦惜萍发布了新的文献求助10
7秒前
奋斗灵珊完成签到,获得积分10
7秒前
呆萌的凡完成签到,获得积分10
7秒前
在吃饭的时候吃饭完成签到,获得积分10
7秒前
8秒前
8秒前
漂亮半兰发布了新的文献求助20
8秒前
9秒前
9秒前
9秒前
10秒前
慕青应助风清扬采纳,获得10
10秒前
10秒前
cc完成签到,获得积分10
11秒前
11秒前
852应助lql采纳,获得10
11秒前
11秒前
11秒前
12秒前
sss完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5123034
求助须知:如何正确求助?哪些是违规求助? 4327617
关于积分的说明 13484959
捐赠科研通 4161732
什么是DOI,文献DOI怎么找? 2281010
邀请新用户注册赠送积分活动 1282501
关于科研通互助平台的介绍 1221550