Prediction of early childhood obesity with machine learning and electronic health record data

电子健康档案 百分位 儿童肥胖 计算机科学 肥胖 队列 人工智能 医学 机器学习 统计 医疗保健 数学 超重 内科学 经济 经济增长
作者
Xueqin Pang,Christopher B. Forrest,Félice Lê‐Scherban,Aaron J. Masino
出处
期刊:International Journal of Medical Informatics [Elsevier]
卷期号:150: 104454-104454 被引量:66
标识
DOI:10.1016/j.ijmedinf.2021.104454
摘要

This study compares seven machine learning models developed to predict childhood obesity from age > 2 to ≤ 7 years using Electronic Healthcare Record (EHR) data up to age 2 years.EHR data from of 860,510 patients with 11,194,579 healthcare encounters were obtained from the Children's Hospital of Philadelphia. After applying stringent quality control to remove implausible growth values and including only individuals with all recommended wellness visits by age 7 years, 27,203 (50.78 % male) patients remained for model development. Seven machine learning models were developed to predict obesity incidence as defined by the Centers for Disease Control and Prevention (age/sex adjusted BMI>95th percentile). Model performance was evaluated by multiple standard classifier metrics and the differences among seven models were compared using the Cochran's Q test and post-hoc pairwise testing.XGBoost yielded 0.81 (0.001) AUC, which outperformed all other models. It also achieved statistically significant better performance than all other models on standard classifier metrics (sensitivity fixed at 80 %): precision 30.90 % (0.22 %), F1-socre 44.60 % (0.26 %), accuracy 66.14 % (0.41 %), and specificity 63.27 % (0.41 %).Early childhood obesity prediction models were developed from the largest cohort reported to date. Relative to prior research, our models generalize to include males and females in a single model and extend the time frame for obesity incidence prediction to 7 years of age. The presented machine learning model development workflow can be adapted to various EHR-based studies and may be valuable for developing other clinical prediction models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助qingchao采纳,获得10
刚刚
刚刚
刚刚
刚刚
1秒前
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
Tomsen完成签到,获得积分10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
领导范儿应助谨慎的寒松采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
1秒前
深情安青应助12345678采纳,获得10
1秒前
guagua应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
2秒前
科目三应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
stardust314应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
2秒前
夏伯阳关注了科研通微信公众号
2秒前
4秒前
玉蝉发布了新的文献求助10
5秒前
肾宝发布了新的文献求助10
6秒前
丁义博完成签到,获得积分10
6秒前
6秒前
7秒前
Frank发布了新的文献求助10
7秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736878
求助须知:如何正确求助?哪些是违规求助? 5369127
关于积分的说明 15334294
捐赠科研通 4880593
什么是DOI,文献DOI怎么找? 2622982
邀请新用户注册赠送积分活动 1571829
关于科研通互助平台的介绍 1528648