电子健康档案
健康档案
儿童肥胖
计算机科学
肥胖
人工智能
医学
机器学习
数据科学
医疗保健
超重
经济增长
内科学
经济
作者
Xueqin Pang,Christopher B. Forrest,Félice Lê‐Scherban,Aaron J. Masino
标识
DOI:10.1016/j.ijmedinf.2021.104454
摘要
This study compares seven machine learning models developed to predict childhood obesity from age > 2 to ≤ 7 years using Electronic Healthcare Record (EHR) data up to age 2 years.EHR data from of 860,510 patients with 11,194,579 healthcare encounters were obtained from the Children's Hospital of Philadelphia. After applying stringent quality control to remove implausible growth values and including only individuals with all recommended wellness visits by age 7 years, 27,203 (50.78 % male) patients remained for model development. Seven machine learning models were developed to predict obesity incidence as defined by the Centers for Disease Control and Prevention (age/sex adjusted BMI>95th percentile). Model performance was evaluated by multiple standard classifier metrics and the differences among seven models were compared using the Cochran's Q test and post-hoc pairwise testing.XGBoost yielded 0.81 (0.001) AUC, which outperformed all other models. It also achieved statistically significant better performance than all other models on standard classifier metrics (sensitivity fixed at 80 %): precision 30.90 % (0.22 %), F1-socre 44.60 % (0.26 %), accuracy 66.14 % (0.41 %), and specificity 63.27 % (0.41 %).Early childhood obesity prediction models were developed from the largest cohort reported to date. Relative to prior research, our models generalize to include males and females in a single model and extend the time frame for obesity incidence prediction to 7 years of age. The presented machine learning model development workflow can be adapted to various EHR-based studies and may be valuable for developing other clinical prediction models.
科研通智能强力驱动
Strongly Powered by AbleSci AI